Advertisement

Advertisement

The effects of online education on academic success: A meta-analysis study

  • Published: 06 September 2021
  • Volume 27 , pages 429–450, ( 2022 )

Cite this article

research paper about online distance learning

  • Hakan Ulum   ORCID: orcid.org/0000-0002-1398-6935 1  

82k Accesses

30 Citations

10 Altmetric

Explore all metrics

The purpose of this study is to analyze the effect of online education, which has been extensively used on student achievement since the beginning of the pandemic. In line with this purpose, a meta-analysis of the related studies focusing on the effect of online education on students’ academic achievement in several countries between the years 2010 and 2021 was carried out. Furthermore, this study will provide a source to assist future studies with comparing the effect of online education on academic achievement before and after the pandemic. This meta-analysis study consists of 27 studies in total. The meta-analysis involves the studies conducted in the USA, Taiwan, Turkey, China, Philippines, Ireland, and Georgia. The studies included in the meta-analysis are experimental studies, and the total sample size is 1772. In the study, the funnel plot, Duval and Tweedie’s Trip and Fill Analysis, Orwin’s Safe N Analysis, and Egger’s Regression Test were utilized to determine the publication bias, which has been found to be quite low. Besides, Hedge’s g statistic was employed to measure the effect size for the difference between the means performed in accordance with the random effects model. The results of the study show that the effect size of online education on academic achievement is on a medium level. The heterogeneity test results of the meta-analysis study display that the effect size does not differ in terms of class level, country, online education approaches, and lecture moderators.

Explore related subjects

  • Artificial Intelligence
  • Digital Education and Educational Technology

Avoid common mistakes on your manuscript.

1 Introduction

Information and communication technologies have become a powerful force in transforming the educational settings around the world. The pandemic has been an important factor in transferring traditional physical classrooms settings through adopting information and communication technologies and has also accelerated the transformation. The literature supports that learning environments connected to information and communication technologies highly satisfy students. Therefore, we need to keep interest in technology-based learning environments. Clearly, technology has had a huge impact on young people's online lives. This digital revolution can synergize the educational ambitions and interests of digitally addicted students. In essence, COVID-19 has provided us with an opportunity to embrace online learning as education systems have to keep up with the rapid emergence of new technologies.

Information and communication technologies that have an effect on all spheres of life are also actively included in the education field. With the recent developments, using technology in education has become inevitable due to personal and social reasons (Usta, 2011a ). Online education may be given as an example of using information and communication technologies as a consequence of the technological developments. Also, it is crystal clear that online learning is a popular way of obtaining instruction (Demiralay et al., 2016 ; Pillay et al., 2007 ), which is defined by Horton ( 2000 ) as a way of education that is performed through a web browser or an online application without requiring an extra software or a learning source. Furthermore, online learning is described as a way of utilizing the internet to obtain the related learning sources during the learning process, to interact with the content, the teacher, and other learners, as well as to get support throughout the learning process (Ally, 2004 ). Online learning has such benefits as learning independently at any time and place (Vrasidas & MsIsaac, 2000 ), granting facility (Poole, 2000 ), flexibility (Chizmar & Walbert, 1999 ), self-regulation skills (Usta, 2011b ), learning with collaboration, and opportunity to plan self-learning process.

Even though online education practices have not been comprehensive as it is now, internet and computers have been used in education as alternative learning tools in correlation with the advances in technology. The first distance education attempt in the world was initiated by the ‘Steno Courses’ announcement published in Boston newspaper in 1728. Furthermore, in the nineteenth century, Sweden University started the “Correspondence Composition Courses” for women, and University Correspondence College was afterwards founded for the correspondence courses in 1843 (Arat & Bakan, 2011 ). Recently, distance education has been performed through computers, assisted by the facilities of the internet technologies, and soon, it has evolved into a mobile education practice that is emanating from progress in the speed of internet connection, and the development of mobile devices.

With the emergence of pandemic (Covid-19), face to face education has almost been put to a halt, and online education has gained significant importance. The Microsoft management team declared to have 750 users involved in the online education activities on the 10 th March, just before the pandemic; however, on March 24, they informed that the number of users increased significantly, reaching the number of 138,698 users (OECD, 2020 ). This event supports the view that it is better to commonly use online education rather than using it as a traditional alternative educational tool when students do not have the opportunity to have a face to face education (Geostat, 2019 ). The period of Covid-19 pandemic has emerged as a sudden state of having limited opportunities. Face to face education has stopped in this period for a long time. The global spread of Covid-19 affected more than 850 million students all around the world, and it caused the suspension of face to face education. Different countries have proposed several solutions in order to maintain the education process during the pandemic. Schools have had to change their curriculum, and many countries supported the online education practices soon after the pandemic. In other words, traditional education gave its way to online education practices. At least 96 countries have been motivated to access online libraries, TV broadcasts, instructions, sources, video lectures, and online channels (UNESCO, 2020 ). In such a painful period, educational institutions went through online education practices by the help of huge companies such as Microsoft, Google, Zoom, Skype, FaceTime, and Slack. Thus, online education has been discussed in the education agenda more intensively than ever before.

Although online education approaches were not used as comprehensively as it has been used recently, it was utilized as an alternative learning approach in education for a long time in parallel with the development of technology, internet and computers. The academic achievement of the students is often aimed to be promoted by employing online education approaches. In this regard, academicians in various countries have conducted many studies on the evaluation of online education approaches and published the related results. However, the accumulation of scientific data on online education approaches creates difficulties in keeping, organizing and synthesizing the findings. In this research area, studies are being conducted at an increasing rate making it difficult for scientists to be aware of all the research outside of their ​​expertise. Another problem encountered in the related study area is that online education studies are repetitive. Studies often utilize slightly different methods, measures, and/or examples to avoid duplication. This erroneous approach makes it difficult to distinguish between significant differences in the related results. In other words, if there are significant differences in the results of the studies, it may be difficult to express what variety explains the differences in these results. One obvious solution to these problems is to systematically review the results of various studies and uncover the sources. One method of performing such systematic syntheses is the application of meta-analysis which is a methodological and statistical approach to draw conclusions from the literature. At this point, how effective online education applications are in increasing the academic success is an important detail. Has online education, which is likely to be encountered frequently in the continuing pandemic period, been successful in the last ten years? If successful, how much was the impact? Did different variables have an impact on this effect? Academics across the globe have carried out studies on the evaluation of online education platforms and publishing the related results (Chiao et al., 2018 ). It is quite important to evaluate the results of the studies that have been published up until now, and that will be published in the future. Has the online education been successful? If it has been, how big is the impact? Do the different variables affect this impact? What should we consider in the next coming online education practices? These questions have all motivated us to carry out this study. We have conducted a comprehensive meta-analysis study that tries to provide a discussion platform on how to develop efficient online programs for educators and policy makers by reviewing the related studies on online education, presenting the effect size, and revealing the effect of diverse variables on the general impact.

There have been many critical discussions and comprehensive studies on the differences between online and face to face learning; however, the focus of this paper is different in the sense that it clarifies the magnitude of the effect of online education and teaching process, and it represents what factors should be controlled to help increase the effect size. Indeed, the purpose here is to provide conscious decisions in the implementation of the online education process.

The general impact of online education on the academic achievement will be discovered in the study. Therefore, this will provide an opportunity to get a general overview of the online education which has been practiced and discussed intensively in the pandemic period. Moreover, the general impact of online education on academic achievement will be analyzed, considering different variables. In other words, the current study will allow to totally evaluate the study results from the related literature, and to analyze the results considering several cultures, lectures, and class levels. Considering all the related points, this study seeks to answer the following research questions:

What is the effect size of online education on academic achievement?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the country?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the class level?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the lecture?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the online education approaches?

This study aims at determining the effect size of online education, which has been highly used since the beginning of the pandemic, on students’ academic achievement in different courses by using a meta-analysis method. Meta-analysis is a synthesis method that enables gathering of several study results accurately and efficiently, and getting the total results in the end (Tsagris & Fragkos, 2018 ).

2.1 Selecting and coding the data (studies)

The required literature for the meta-analysis study was reviewed in July, 2020, and the follow-up review was conducted in September, 2020. The purpose of the follow-up review was to include the studies which were published in the conduction period of this study, and which met the related inclusion criteria. However, no study was encountered to be included in the follow-up review.

In order to access the studies in the meta-analysis, the databases of Web of Science, ERIC, and SCOPUS were reviewed by utilizing the keywords ‘online learning and online education’. Not every database has a search engine that grants access to the studies by writing the keywords, and this obstacle was considered to be an important problem to be overcome. Therefore, a platform that has a special design was utilized by the researcher. With this purpose, through the open access system of Cukurova University Library, detailed reviews were practiced using EBSCO Information Services (EBSCO) that allow reviewing the whole collection of research through a sole searching box. Since the fundamental variables of this study are online education and online learning, the literature was systematically reviewed in the related databases (Web of Science, ERIC, and SCOPUS) by referring to the keywords. Within this scope, 225 articles were accessed, and the studies were included in the coding key list formed by the researcher. The name of the researchers, the year, the database (Web of Science, ERIC, and SCOPUS), the sample group and size, the lectures that the academic achievement was tested in, the country that the study was conducted in, and the class levels were all included in this coding key.

The following criteria were identified to include 225 research studies which were coded based on the theoretical basis of the meta-analysis study: (1) The studies should be published in the refereed journals between the years 2020 and 2021, (2) The studies should be experimental studies that try to determine the effect of online education and online learning on academic achievement, (3) The values of the stated variables or the required statistics to calculate these values should be stated in the results of the studies, and (4) The sample group of the study should be at a primary education level. These criteria were also used as the exclusion criteria in the sense that the studies that do not meet the required criteria were not included in the present study.

After the inclusion criteria were determined, a systematic review process was conducted, following the year criterion of the study by means of EBSCO. Within this scope, 290,365 studies that analyze the effect of online education and online learning on academic achievement were accordingly accessed. The database (Web of Science, ERIC, and SCOPUS) was also used as a filter by analyzing the inclusion criteria. Hence, the number of the studies that were analyzed was 58,616. Afterwards, the keyword ‘primary education’ was used as the filter and the number of studies included in the study decreased to 3152. Lastly, the literature was reviewed by using the keyword ‘academic achievement’ and 225 studies were accessed. All the information of 225 articles was included in the coding key.

It is necessary for the coders to review the related studies accurately and control the validity, safety, and accuracy of the studies (Stewart & Kamins, 2001 ). Within this scope, the studies that were determined based on the variables used in this study were first reviewed by three researchers from primary education field, then the accessed studies were combined and processed in the coding key by the researcher. All these studies that were processed in the coding key were analyzed in accordance with the inclusion criteria by all the researchers in the meetings, and it was decided that 27 studies met the inclusion criteria (Atici & Polat, 2010 ; Carreon, 2018 ; Ceylan & Elitok Kesici, 2017 ; Chae & Shin, 2016 ; Chiang et al. 2014 ; Ercan, 2014 ; Ercan et al., 2016 ; Gwo-Jen et al., 2018 ; Hayes & Stewart, 2016 ; Hwang et al., 2012 ; Kert et al., 2017 ; Lai & Chen, 2010 ; Lai et al., 2015 ; Meyers et al., 2015 ; Ravenel et al., 2014 ; Sung et al., 2016 ; Wang & Chen, 2013 ; Yu, 2019 ; Yu & Chen, 2014 ; Yu & Pan, 2014 ; Yu et al., 2010 ; Zhong et al., 2017 ). The data from the studies meeting the inclusion criteria were independently processed in the second coding key by three researchers, and consensus meetings were arranged for further discussion. After the meetings, researchers came to an agreement that the data were coded accurately and precisely. Having identified the effect sizes and heterogeneity of the study, moderator variables that will show the differences between the effect sizes were determined. The data related to the determined moderator variables were added to the coding key by three researchers, and a new consensus meeting was arranged. After the meeting, researchers came to an agreement that moderator variables were coded accurately and precisely.

2.2 Study group

27 studies are included in the meta-analysis. The total sample size of the studies that are included in the analysis is 1772. The characteristics of the studies included are given in Table 1 .

2.3 Publication bias

Publication bias is the low capability of published studies on a research subject to represent all completed studies on the same subject (Card, 2011 ; Littell et al., 2008 ). Similarly, publication bias is the state of having a relationship between the probability of the publication of a study on a subject, and the effect size and significance that it produces. Within this scope, publication bias may occur when the researchers do not want to publish the study as a result of failing to obtain the expected results, or not being approved by the scientific journals, and consequently not being included in the study synthesis (Makowski et al., 2019 ). The high possibility of publication bias in a meta-analysis study negatively affects (Pecoraro, 2018 ) the accuracy of the combined effect size, causing the average effect size to be reported differently than it should be (Borenstein et al., 2009 ). For this reason, the possibility of publication bias in the included studies was tested before determining the effect sizes of the relationships between the stated variables. The possibility of publication bias of this meta-analysis study was analyzed by using the funnel plot, Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test.

2.4 Selecting the model

After determining the probability of publication bias of this meta-analysis study, the statistical model used to calculate the effect sizes was selected. The main approaches used in the effect size calculations according to the differentiation level of inter-study variance are fixed and random effects models (Pigott, 2012 ). Fixed effects model refers to the homogeneity of the characteristics of combined studies apart from the sample sizes, while random effects model refers to the parameter diversity between the studies (Cumming, 2012 ). While calculating the average effect size in the random effects model (Deeks et al., 2008 ) that is based on the assumption that effect predictions of different studies are only the result of a similar distribution, it is necessary to consider several situations such as the effect size apart from the sample error of combined studies, characteristics of the participants, duration, scope, and pattern of the study (Littell et al., 2008 ). While deciding the model in the meta-analysis study, the assumptions on the sample characteristics of the studies included in the analysis and the inferences that the researcher aims to make should be taken into consideration. The fact that the sample characteristics of the studies conducted in the field of social sciences are affected by various parameters shows that using random effects model is more appropriate in this sense. Besides, it is stated that the inferences made with the random effects model are beyond the studies included in the meta-analysis (Field, 2003 ; Field & Gillett, 2010 ). Therefore, using random effects model also contributes to the generalization of research data. The specified criteria for the statistical model selection show that according to the nature of the meta-analysis study, the model should be selected just before the analysis (Borenstein et al., 2007 ; Littell et al., 2008 ). Within this framework, it was decided to make use of the random effects model, considering that the students who are the samples of the studies included in the meta-analysis are from different countries and cultures, the sample characteristics of the studies differ, and the patterns and scopes of the studies vary as well.

2.5 Heterogeneity

Meta-analysis facilitates analyzing the research subject with different parameters by showing the level of diversity between the included studies. Within this frame, whether there is a heterogeneous distribution between the studies included in the study or not has been evaluated in the present study. The heterogeneity of the studies combined in this meta-analysis study has been determined through Q and I 2 tests. Q test evaluates the random distribution probability of the differences between the observed results (Deeks et al., 2008 ). Q value exceeding 2 value calculated according to the degree of freedom and significance, indicates the heterogeneity of the combined effect sizes (Card, 2011 ). I 2 test, which is the complementary of the Q test, shows the heterogeneity amount of the effect sizes (Cleophas & Zwinderman, 2017 ). I 2 value being higher than 75% is explained as high level of heterogeneity.

In case of encountering heterogeneity in the studies included in the meta-analysis, the reasons of heterogeneity can be analyzed by referring to the study characteristics. The study characteristics which may be related to the heterogeneity between the included studies can be interpreted through subgroup analysis or meta-regression analysis (Deeks et al., 2008 ). While determining the moderator variables, the sufficiency of the number of variables, the relationship between the moderators, and the condition to explain the differences between the results of the studies have all been considered in the present study. Within this scope, it was predicted in this meta-analysis study that the heterogeneity can be explained with the country, class level, and lecture moderator variables of the study in terms of the effect of online education, which has been highly used since the beginning of the pandemic, and it has an impact on the students’ academic achievement in different lectures. Some subgroups were evaluated and categorized together, considering that the number of effect sizes of the sub-dimensions of the specified variables is not sufficient to perform moderator analysis (e.g. the countries where the studies were conducted).

2.6 Interpreting the effect sizes

Effect size is a factor that shows how much the independent variable affects the dependent variable positively or negatively in each included study in the meta-analysis (Dinçer, 2014 ). While interpreting the effect sizes obtained from the meta-analysis, the classifications of Cohen et al. ( 2007 ) have been utilized. The case of differentiating the specified relationships of the situation of the country, class level, and school subject variables of the study has been identified through the Q test, degree of freedom, and p significance value Fig.  1 and 2 .

3 Findings and results

The purpose of this study is to determine the effect size of online education on academic achievement. Before determining the effect sizes in the study, the probability of publication bias of this meta-analysis study was analyzed by using the funnel plot, Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test.

When the funnel plots are examined, it is seen that the studies included in the analysis are distributed symmetrically on both sides of the combined effect size axis, and they are generally collected in the middle and lower sections. The probability of publication bias is low according to the plots. However, since the results of the funnel scatter plots may cause subjective interpretations, they have been supported by additional analyses (Littell et al., 2008 ). Therefore, in order to provide an extra proof for the probability of publication bias, it has been analyzed through Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test (Table 2 ).

Table 2 consists of the results of the rates of publication bias probability before counting the effect size of online education on academic achievement. According to the table, Orwin Safe N analysis results show that it is not necessary to add new studies to the meta-analysis in order for Hedges g to reach a value outside the range of ± 0.01. The Duval and Tweedie test shows that excluding the studies that negatively affect the symmetry of the funnel scatter plots for each meta-analysis or adding their exact symmetrical equivalents does not significantly differentiate the calculated effect size. The insignificance of the Egger tests results reveals that there is no publication bias in the meta-analysis study. The results of the analysis indicate the high internal validity of the effect sizes and the adequacy of representing the studies conducted on the relevant subject.

In this study, it was aimed to determine the effect size of online education on academic achievement after testing the publication bias. In line with the first purpose of the study, the forest graph regarding the effect size of online education on academic achievement is shown in Fig.  3 , and the statistics regarding the effect size are given in Table 3 .

figure 1

The flow chart of the scanning and selection process of the studies

figure 2

Funnel plot graphics representing the effect size of the effects of online education on academic success

figure 3

Forest graph related to the effect size of online education on academic success

The square symbols in the forest graph in Fig.  3 represent the effect sizes, while the horizontal lines show the intervals in 95% confidence of the effect sizes, and the diamond symbol shows the overall effect size. When the forest graph is analyzed, it is seen that the lower and upper limits of the combined effect sizes are generally close to each other, and the study loads are similar. This similarity in terms of study loads indicates the similarity of the contribution of the combined studies to the overall effect size.

Figure  3 clearly represents that the study of Liu and others (Liu et al., 2018 ) has the lowest, and the study of Ercan and Bilen ( 2014 ) has the highest effect sizes. The forest graph shows that all the combined studies and the overall effect are positive. Furthermore, it is simply understood from the forest graph in Fig.  3 and the effect size statistics in Table 3 that the results of the meta-analysis study conducted with 27 studies and analyzing the effect of online education on academic achievement illustrate that this relationship is on average level (= 0.409).

After the analysis of the effect size in the study, whether the studies included in the analysis are distributed heterogeneously or not has also been analyzed. The heterogeneity of the combined studies was determined through the Q and I 2 tests. As a result of the heterogeneity test, Q statistical value was calculated as 29.576. With 26 degrees of freedom at 95% significance level in the chi-square table, the critical value is accepted as 38.885. The Q statistical value (29.576) counted in this study is lower than the critical value of 38.885. The I 2 value, which is the complementary of the Q statistics, is 12.100%. This value indicates that the accurate heterogeneity or the total variability that can be attributed to variability between the studies is 12%. Besides, p value is higher than (0.285) p = 0.05. All these values [Q (26) = 29.579, p = 0.285; I2 = 12.100] indicate that there is a homogeneous distribution between the effect sizes, and fixed effects model should be used to interpret these effect sizes. However, some researchers argue that even if the heterogeneity is low, it should be evaluated based on the random effects model (Borenstein et al., 2007 ). Therefore, this study gives information about both models. The heterogeneity of the combined studies has been attempted to be explained with the characteristics of the studies included in the analysis. In this context, the final purpose of the study is to determine the effect of the country, academic level, and year variables on the findings. Accordingly, the statistics regarding the comparison of the stated relations according to the countries where the studies were conducted are given in Table 4 .

As seen in Table 4 , the effect of online education on academic achievement does not differ significantly according to the countries where the studies were conducted in. Q test results indicate the heterogeneity of the relationships between the variables in terms of countries where the studies were conducted in. According to the table, the effect of online education on academic achievement was reported as the highest in other countries, and the lowest in the US. The statistics regarding the comparison of the stated relations according to the class levels are given in Table 5 .

As seen in Table 5 , the effect of online education on academic achievement does not differ according to the class level. However, the effect of online education on academic achievement is the highest in the 4 th class. The statistics regarding the comparison of the stated relations according to the class levels are given in Table 6 .

As seen in Table 6 , the effect of online education on academic achievement does not differ according to the school subjects included in the studies. However, the effect of online education on academic achievement is the highest in ICT subject.

The obtained effect size in the study was formed as a result of the findings attained from primary studies conducted in 7 different countries. In addition, these studies are the ones on different approaches to online education (online learning environments, social networks, blended learning, etc.). In this respect, the results may raise some questions about the validity and generalizability of the results of the study. However, the moderator analyzes, whether for the country variable or for the approaches covered by online education, did not create significant differences in terms of the effect sizes. If significant differences were to occur in terms of effect sizes, we could say that the comparisons we will make by comparing countries under the umbrella of online education would raise doubts in terms of generalizability. Moreover, no study has been found in the literature that is not based on a special approach or does not contain a specific technique conducted under the name of online education alone. For instance, one of the commonly used definitions is blended education which is defined as an educational model in which online education is combined with traditional education method (Colis & Moonen, 2001 ). Similarly, Rasmussen ( 2003 ) defines blended learning as “a distance education method that combines technology (high technology such as television, internet, or low technology such as voice e-mail, conferences) with traditional education and training.” Further, Kerres and Witt (2003) define blended learning as “combining face-to-face learning with technology-assisted learning.” As it is clearly observed, online education, which has a wider scope, includes many approaches.

As seen in Table 7 , the effect of online education on academic achievement does not differ according to online education approaches included in the studies. However, the effect of online education on academic achievement is the highest in Web Based Problem Solving Approach.

4 Conclusions and discussion

Considering the developments during the pandemics, it is thought that the diversity in online education applications as an interdisciplinary pragmatist field will increase, and the learning content and processes will be enriched with the integration of new technologies into online education processes. Another prediction is that more flexible and accessible learning opportunities will be created in online education processes, and in this way, lifelong learning processes will be strengthened. As a result, it is predicted that in the near future, online education and even digital learning with a newer name will turn into the main ground of education instead of being an alternative or having a support function in face-to-face learning. The lessons learned from the early period online learning experience, which was passed with rapid adaptation due to the Covid19 epidemic, will serve to develop this method all over the world, and in the near future, online learning will become the main learning structure through increasing its functionality with the contribution of new technologies and systems. If we look at it from this point of view, there is a necessity to strengthen online education.

In this study, the effect of online learning on academic achievement is at a moderate level. To increase this effect, the implementation of online learning requires support from teachers to prepare learning materials, to design learning appropriately, and to utilize various digital-based media such as websites, software technology and various other tools to support the effectiveness of online learning (Rolisca & Achadiyah, 2014 ). According to research conducted by Rahayu et al. ( 2017 ), it has been proven that the use of various types of software increases the effectiveness and quality of online learning. Implementation of online learning can affect students' ability to adapt to technological developments in that it makes students use various learning resources on the internet to access various types of information, and enables them to get used to performing inquiry learning and active learning (Hart et al., 2019 ; Prestiadi et al., 2019 ). In addition, there may be many reasons for the low level of effect in this study. The moderator variables examined in this study could be a guide in increasing the level of practical effect. However, the effect size did not differ significantly for all moderator variables. Different moderator analyzes can be evaluated in order to increase the level of impact of online education on academic success. If confounding variables that significantly change the effect level are detected, it can be spoken more precisely in order to increase this level. In addition to the technical and financial problems, the level of impact will increase if a few other difficulties are eliminated such as students, lack of interaction with the instructor, response time, and lack of traditional classroom socialization.

In addition, COVID-19 pandemic related social distancing has posed extreme difficulties for all stakeholders to get online as they have to work in time constraints and resource constraints. Adopting the online learning environment is not just a technical issue, it is a pedagogical and instructive challenge as well. Therefore, extensive preparation of teaching materials, curriculum, and assessment is vital in online education. Technology is the delivery tool and requires close cross-collaboration between teaching, content and technology teams (CoSN, 2020 ).

Online education applications have been used for many years. However, it has come to the fore more during the pandemic process. This result of necessity has brought with it the discussion of using online education instead of traditional education methods in the future. However, with this research, it has been revealed that online education applications are moderately effective. The use of online education instead of face-to-face education applications can only be possible with an increase in the level of success. This may have been possible with the experience and knowledge gained during the pandemic process. Therefore, the meta-analysis of experimental studies conducted in the coming years will guide us. In this context, experimental studies using online education applications should be analyzed well. It would be useful to identify variables that can change the level of impacts with different moderators. Moderator analyzes are valuable in meta-analysis studies (for example, the role of moderators in Karl Pearson's typhoid vaccine studies). In this context, each analysis study sheds light on future studies. In meta-analyses to be made about online education, it would be beneficial to go beyond the moderators determined in this study. Thus, the contribution of similar studies to the field will increase more.

The purpose of this study is to determine the effect of online education on academic achievement. In line with this purpose, the studies that analyze the effect of online education approaches on academic achievement have been included in the meta-analysis. The total sample size of the studies included in the meta-analysis is 1772. While the studies included in the meta-analysis were conducted in the US, Taiwan, Turkey, China, Philippines, Ireland, and Georgia, the studies carried out in Europe could not be reached. The reason may be attributed to that there may be more use of quantitative research methods from a positivist perspective in the countries with an American academic tradition. As a result of the study, it was found out that the effect size of online education on academic achievement (g = 0.409) was moderate. In the studies included in the present research, we found that online education approaches were more effective than traditional ones. However, contrary to the present study, the analysis of comparisons between online and traditional education in some studies shows that face-to-face traditional learning is still considered effective compared to online learning (Ahmad et al., 2016 ; Hamdani & Priatna, 2020 ; Wei & Chou, 2020 ). Online education has advantages and disadvantages. The advantages of online learning compared to face-to-face learning in the classroom is the flexibility of learning time in online learning, the learning time does not include a single program, and it can be shaped according to circumstances (Lai et al., 2019 ). The next advantage is the ease of collecting assignments for students, as these can be done without having to talk to the teacher. Despite this, online education has several weaknesses, such as students having difficulty in understanding the material, teachers' inability to control students, and students’ still having difficulty interacting with teachers in case of internet network cuts (Swan, 2007 ). According to Astuti et al ( 2019 ), face-to-face education method is still considered better by students than e-learning because it is easier to understand the material and easier to interact with teachers. The results of the study illustrated that the effect size (g = 0.409) of online education on academic achievement is of medium level. Therefore, the results of the moderator analysis showed that the effect of online education on academic achievement does not differ in terms of country, lecture, class level, and online education approaches variables. After analyzing the literature, several meta-analyses on online education were published (Bernard et al., 2004 ; Machtmes & Asher, 2000 ; Zhao et al., 2005 ). Typically, these meta-analyzes also include the studies of older generation technologies such as audio, video, or satellite transmission. One of the most comprehensive studies on online education was conducted by Bernard et al. ( 2004 ). In this study, 699 independent effect sizes of 232 studies published from 1985 to 2001 were analyzed, and face-to-face education was compared to online education, with respect to success criteria and attitudes of various learners from young children to adults. In this meta-analysis, an overall effect size close to zero was found for the students' achievement (g +  = 0.01).

In another meta-analysis study carried out by Zhao et al. ( 2005 ), 98 effect sizes were examined, including 51 studies on online education conducted between 1996 and 2002. According to the study of Bernard et al. ( 2004 ), this meta-analysis focuses on the activities done in online education lectures. As a result of the research, an overall effect size close to zero was found for online education utilizing more than one generation technology for students at different levels. However, the salient point of the meta-analysis study of Zhao et al. is that it takes the average of different types of results used in a study to calculate an overall effect size. This practice is problematic because the factors that develop one type of learner outcome (e.g. learner rehabilitation), particularly course characteristics and practices, may be quite different from those that develop another type of outcome (e.g. learner's achievement), and it may even cause damage to the latter outcome. While mixing the studies with different types of results, this implementation may obscure the relationship between practices and learning.

Some meta-analytical studies have focused on the effectiveness of the new generation distance learning courses accessed through the internet for specific student populations. For instance, Sitzmann and others (Sitzmann et al., 2006 ) reviewed 96 studies published from 1996 to 2005, comparing web-based education of job-related knowledge or skills with face-to-face one. The researchers found that web-based education in general was slightly more effective than face-to-face education, but it is insufficient in terms of applicability ("knowing how to apply"). In addition, Sitzmann et al. ( 2006 ) revealed that Internet-based education has a positive effect on theoretical knowledge in quasi-experimental studies; however, it positively affects face-to-face education in experimental studies performed by random assignment. This moderator analysis emphasizes the need to pay attention to the factors of designs of the studies included in the meta-analysis. The designs of the studies included in this meta-analysis study were ignored. This can be presented as a suggestion to the new studies that will be conducted.

Another meta-analysis study was conducted by Cavanaugh et al. ( 2004 ), in which they focused on online education. In this study on internet-based distance education programs for students under 12 years of age, the researchers combined 116 results from 14 studies published between 1999 and 2004 to calculate an overall effect that was not statistically different from zero. The moderator analysis carried out in this study showed that there was no significant factor affecting the students' success. This meta-analysis used multiple results of the same study, ignoring the fact that different results of the same student would not be independent from each other.

In conclusion, some meta-analytical studies analyzed the consequences of online education for a wide range of students (Bernard et al., 2004 ; Zhao et al., 2005 ), and the effect sizes were generally low in these studies. Furthermore, none of the large-scale meta-analyzes considered the moderators, database quality standards or class levels in the selection of the studies, while some of them just referred to the country and lecture moderators. Advances in internet-based learning tools, the pandemic process, and increasing popularity in different learning contexts have required a precise meta-analysis of students' learning outcomes through online learning. Previous meta-analysis studies were typically based on the studies, involving narrow range of confounding variables. In the present study, common but significant moderators such as class level and lectures during the pandemic process were discussed. For instance, the problems have been experienced especially in terms of eligibility of class levels in online education platforms during the pandemic process. It was found that there is a need to study and make suggestions on whether online education can meet the needs of teachers and students.

Besides, the main forms of online education in the past were to watch the open lectures of famous universities and educational videos of institutions. In addition, online education is mainly a classroom-based teaching implemented by teachers in their own schools during the pandemic period, which is an extension of the original school education. This meta-analysis study will stand as a source to compare the effect size of the online education forms of the past decade with what is done today, and what will be done in the future.

Lastly, the heterogeneity test results of the meta-analysis study display that the effect size does not differ in terms of class level, country, online education approaches, and lecture moderators.

*Studies included in meta-analysis

Ahmad, S., Sumardi, K., & Purnawan, P. (2016). Komparasi Peningkatan Hasil Belajar Antara Pembelajaran Menggunakan Sistem Pembelajaran Online Terpadu Dengan Pembelajaran Klasikal Pada Mata Kuliah Pneumatik Dan Hidrolik. Journal of Mechanical Engineering Education, 2 (2), 286–292.

Article   Google Scholar  

Ally, M. (2004). Foundations of educational theory for online learning. Theory and Practice of Online Learning, 2 , 15–44. Retrieved on the 11th of September, 2020 from https://eddl.tru.ca/wp-content/uploads/2018/12/01_Anderson_2008-Theory_and_Practice_of_Online_Learning.pdf

Arat, T., & Bakan, Ö. (2011). Uzaktan eğitim ve uygulamaları. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksek Okulu Dergisi , 14 (1–2), 363–374. https://doi.org/10.29249/selcuksbmyd.540741

Astuti, C. C., Sari, H. M. K., & Azizah, N. L. (2019). Perbandingan Efektifitas Proses Pembelajaran Menggunakan Metode E-Learning dan Konvensional. Proceedings of the ICECRS, 2 (1), 35–40.

*Atici, B., & Polat, O. C. (2010). Influence of the online learning environments and tools on the student achievement and opinions. Educational Research and Reviews, 5 (8), 455–464. Retrieved on the 11th of October, 2020 from https://academicjournals.org/journal/ERR/article-full-text-pdf/4C8DD044180.pdf

Bernard, R. M., Abrami, P. C., Lou, Y., Borokhovski, E., Wade, A., Wozney, L., et al. (2004). How does distance education compare with classroom instruction? A meta- analysis of the empirical literature. Review of Educational Research, 3 (74), 379–439. https://doi.org/10.3102/00346543074003379

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis . Wiley.

Book   Google Scholar  

Borenstein, M., Hedges, L., & Rothstein, H. (2007). Meta-analysis: Fixed effect vs. random effects . UK: Wiley.

Card, N. A. (2011). Applied meta-analysis for social science research: Methodology in the social sciences . Guilford.

Google Scholar  

*Carreon, J. R. (2018 ). Facebook as integrated blended learning tool in technology and livelihood education exploratory. Retrieved on the 1st of October, 2020 from https://files.eric.ed.gov/fulltext/EJ1197714.pdf

Cavanaugh, C., Gillan, K. J., Kromrey, J., Hess, M., & Blomeyer, R. (2004). The effects of distance education on K-12 student outcomes: A meta-analysis. Learning Point Associates/North Central Regional Educational Laboratory (NCREL) . Retrieved on the 11th of September, 2020 from https://files.eric.ed.gov/fulltext/ED489533.pdf

*Ceylan, V. K., & Elitok Kesici, A. (2017). Effect of blended learning to academic achievement. Journal of Human Sciences, 14 (1), 308. https://doi.org/10.14687/jhs.v14i1.4141

*Chae, S. E., & Shin, J. H. (2016). Tutoring styles that encourage learner satisfaction, academic engagement, and achievement in an online environment. Interactive Learning Environments, 24(6), 1371–1385. https://doi.org/10.1080/10494820.2015.1009472

*Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology and Society, 17 (4), 352–365. Retrieved on the 11th of September, 2020 from https://www.researchgate.net/profile/Gwo_Jen_Hwang/publication/287529242_An_Augmented_Reality-based_Mobile_Learning_System_to_Improve_Students'_Learning_Achievements_and_Motivations_in_Natural_Science_Inquiry_Activities/links/57198c4808ae30c3f9f2c4ac.pdf

Chiao, H. M., Chen, Y. L., & Huang, W. H. (2018). Examining the usability of an online virtual tour-guiding platform for cultural tourism education. Journal of Hospitality, Leisure, Sport & Tourism Education, 23 (29–38), 1. https://doi.org/10.1016/j.jhlste.2018.05.002

Chizmar, J. F., & Walbert, M. S. (1999). Web-based learning environments guided by principles of good teaching practice. Journal of Economic Education, 30 (3), 248–264. https://doi.org/10.2307/1183061

Cleophas, T. J., & Zwinderman, A. H. (2017). Modern meta-analysis: Review and update of methodologies . Switzerland: Springer. https://doi.org/10.1007/978-3-319-55895-0

Cohen, L., Manion, L., & Morrison, K. (2007). Observation.  Research Methods in Education, 6 , 396–412. Retrieved on the 11th of September, 2020 from https://www.researchgate.net/profile/Nabil_Ashraf2/post/How_to_get_surface_potential_Vs_Voltage_curve_from_CV_and_GV_measurements_of_MOS_capacitor/attachment/5ac6033cb53d2f63c3c405b4/AS%3A612011817844736%401522926396219/download/Very+important_C-V+characterization+Lehigh+University+thesis.pdf

Colis, B., & Moonen, J. (2001). Flexible Learning in a Digital World: Experiences and Expectations. Open & Distance Learning Series . Stylus Publishing.

CoSN. (2020). COVID-19 Response: Preparing to Take School Online. CoSN. (2020). COVID-19 Response: Preparing to Take School Online. Retrieved on the 3rd of September, 2021 from https://www.cosn.org/sites/default/files/COVID-19%20Member%20Exclusive_0.pdf

Cumming, G. (2012). Understanding new statistics: Effect sizes, confidence intervals, and meta-analysis. New York, USA: Routledge. https://doi.org/10.4324/9780203807002

Deeks, J. J., Higgins, J. P. T., & Altman, D. G. (2008). Analysing data and undertaking meta-analyses . In J. P. T. Higgins & S. Green (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 243–296). Sussex: John Wiley & Sons. https://doi.org/10.1002/9780470712184.ch9

Demiralay, R., Bayır, E. A., & Gelibolu, M. F. (2016). Öğrencilerin bireysel yenilikçilik özellikleri ile çevrimiçi öğrenmeye hazır bulunuşlukları ilişkisinin incelenmesi. Eğitim ve Öğretim Araştırmaları Dergisi, 5 (1), 161–168. https://doi.org/10.23891/efdyyu.2017.10

Dinçer, S. (2014). Eğitim bilimlerinde uygulamalı meta-analiz. Pegem Atıf İndeksi, 2014(1), 1–133. https://doi.org/10.14527/pegem.001

*Durak, G., Cankaya, S., Yunkul, E., & Ozturk, G. (2017). The effects of a social learning network on students’ performances and attitudes. European Journal of Education Studies, 3 (3), 312–333. 10.5281/zenodo.292951

*Ercan, O. (2014). Effect of web assisted education supported by six thinking hats on students’ academic achievement in science and technology classes . European Journal of Educational Research, 3 (1), 9–23. https://doi.org/10.12973/eu-jer.3.1.9

Ercan, O., & Bilen, K. (2014). Effect of web assisted education supported by six thinking hats on students’ academic achievement in science and technology classes. European Journal of Educational Research, 3 (1), 9–23.

*Ercan, O., Bilen, K., & Ural, E. (2016). “Earth, sun and moon”: Computer assisted instruction in secondary school science - Achievement and attitudes. Issues in Educational Research, 26 (2), 206–224. https://doi.org/10.12973/eu-jer.3.1.9

Field, A. P. (2003). The problems in using fixed-effects models of meta-analysis on real-world data. Understanding Statistics, 2 (2), 105–124. https://doi.org/10.1207/s15328031us0202_02

Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63 (3), 665–694. https://doi.org/10.1348/00071010x502733

Geostat. (2019). ‘Share of households with internet access’, National statistics office of Georgia . Retrieved on the 2nd September 2020 from https://www.geostat.ge/en/modules/categories/106/information-and-communication-technologies-usage-in-households

*Gwo-Jen, H., Nien-Ting, T., & Xiao-Ming, W. (2018). Creating interactive e-books through learning by design: The impacts of guided peer-feedback on students’ learning achievements and project outcomes in science courses. Journal of Educational Technology & Society., 21 (1), 25–36. Retrieved on the 2nd of October, 2020 https://ae-uploads.uoregon.edu/ISTE/ISTE2019/PROGRAM_SESSION_MODEL/HANDOUTS/112172923/CreatingInteractiveeBooksthroughLearningbyDesignArticle2018.pdf

Hamdani, A. R., & Priatna, A. (2020). Efektifitas implementasi pembelajaran daring (full online) dimasa pandemi Covid-19 pada jenjang Sekolah Dasar di Kabupaten Subang. Didaktik: Jurnal Ilmiah PGSD STKIP Subang, 6 (1), 1–9.

Hart, C. M., Berger, D., Jacob, B., Loeb, S., & Hill, M. (2019). Online learning, offline outcomes: Online course taking and high school student performance. Aera Open, 5(1).

*Hayes, J., & Stewart, I. (2016). Comparing the effects of derived relational training and computer coding on intellectual potential in school-age children. The British Journal of Educational Psychology, 86 (3), 397–411. https://doi.org/10.1111/bjep.12114

Horton, W. K. (2000). Designing web-based training: How to teach anyone anything anywhere anytime (Vol. 1). Wiley Publishing.

*Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers and Education, 59 (4), 1246–1256. https://doi.org/10.1016/j.compedu.2012.05.009

*Kert, S. B., Köşkeroğlu Büyükimdat, M., Uzun, A., & Çayiroğlu, B. (2017). Comparing active game-playing scores and academic performances of elementary school students. Education 3–13, 45 (5), 532–542. https://doi.org/10.1080/03004279.2016.1140800

*Lai, A. F., & Chen, D. J. (2010). Web-based two-tier diagnostic test and remedial learning experiment. International Journal of Distance Education Technologies, 8 (1), 31–53. https://doi.org/10.4018/jdet.2010010103

*Lai, A. F., Lai, H. Y., Chuang W. H., & Wu, Z.H. (2015). Developing a mobile learning management system for outdoors nature science activities based on 5e learning cycle. Proceedings of the International Conference on e-Learning, ICEL. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on e-Learning (Las Palmas de Gran Canaria, Spain, July 21–24, 2015). Retrieved on the 14th November 2020 from https://files.eric.ed.gov/fulltext/ED562095.pdf

Lai, C. H., Lin, H. W., Lin, R. M., & Tho, P. D. (2019). Effect of peer interaction among online learning community on learning engagement and achievement. International Journal of Distance Education Technologies (IJDET), 17 (1), 66–77.

Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis . Oxford University.

*Liu, K. P., Tai, S. J. D., & Liu, C. C. (2018). Enhancing language learning through creation: the effect of digital storytelling on student learning motivation and performance in a school English course. Educational Technology Research and Development, 66 (4), 913–935. https://doi.org/10.1007/s11423-018-9592-z

Machtmes, K., & Asher, J. W. (2000). A meta-analysis of the effectiveness of telecourses in distance education. American Journal of Distance Education, 14 (1), 27–46. https://doi.org/10.1080/08923640009527043

Makowski, D., Piraux, F., & Brun, F. (2019). From experimental network to meta-analysis: Methods and applications with R for agronomic and environmental sciences. Dordrecht: Springer. https://doi.org/10.1007/978-94-024_1696-1

* Meyers, C., Molefe, A., & Brandt, C. (2015). The Impact of the" Enhancing Missouri's Instructional Networked Teaching Strategies"(eMINTS) Program on Student Achievement, 21st-Century Skills, and Academic Engagement--Second-Year Results . Society for Research on Educational Effectiveness. Retrieved on the 14 th November, 2020 from https://files.eric.ed.gov/fulltext/ED562508.pdf

OECD. (2020). ‘A framework to guide an education response to the COVID-19 Pandemic of 2020 ’. https://doi.org/10.26524/royal.37.6

Pecoraro, V. (2018). Appraising evidence . In G. Biondi-Zoccai (Ed.), Diagnostic meta-analysis: A useful tool for clinical decision-making (pp. 99–114). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78966-8_9

Pigott, T. (2012). Advances in meta-analysis . Springer.

Pillay, H. , Irving, K., & Tones, M. (2007). Validation of the diagnostic tool for assessing Tertiary students’ readiness for online learning. Higher Education Research & Development, 26 (2), 217–234. https://doi.org/10.1080/07294360701310821

Prestiadi, D., Zulkarnain, W., & Sumarsono, R. B. (2019). Visionary leadership in total quality management: efforts to improve the quality of education in the industrial revolution 4.0. In the 4th International Conference on Education and Management (COEMA 2019). Atlantis Press

Poole, D. M. (2000). Student participation in a discussion-oriented online course: a case study. Journal of Research on Computing in Education, 33 (2), 162–177. https://doi.org/10.1080/08886504.2000.10782307

Rahayu, F. S., Budiyanto, D., & Palyama, D. (2017). Analisis penerimaan e-learning menggunakan technology acceptance model (Tam)(Studi Kasus: Universitas Atma Jaya Yogyakarta). Jurnal Terapan Teknologi Informasi, 1 (2), 87–98.

Rasmussen, R. C. (2003). The quantity and quality of human interaction in a synchronous blended learning environment . Brigham Young University Press.

*Ravenel, J., T. Lambeth, D., & Spires, B. (2014). Effects of computer-based programs on mathematical achievement scores for fourth-grade students. i-manager’s Journal on School Educational Technology, 10 (1), 8–21. https://doi.org/10.26634/jsch.10.1.2830

Rolisca, R. U. C., & Achadiyah, B. N. (2014). Pengembangan media evaluasi pembelajaran dalam bentuk online berbasis e-learning menggunakan software wondershare quiz creator dalam mata pelajaran akuntansi SMA Brawijaya Smart School (BSS). Jurnal Pendidikan Akuntansi Indonesia, 12(2).

Sitzmann, T., Kraiger, K., Stewart, D., & Wisher, R. (2006). The comparative effective- ness of Web-based and classroom instruction: A meta-analysis . Personnel Psychology, 59 (3), 623–664. https://doi.org/10.1111/j.1744-6570.2006.00049.x

Stewart, D. W., & Kamins, M. A. (2001). Developing a coding scheme and coding study reports. In M. W. Lipsey & D. B. Wilson (Eds.), Practical meta­analysis: Applied social research methods series (Vol. 49, pp. 73–90). Sage.

Swan, K. (2007). Research on online learning. Journal of Asynchronous Learning Networks, 11 (1), 55–59.

*Sung, H. Y., Hwang, G. J., & Chang, Y. C. (2016). Development of a mobile learning system based on a collaborative problem-posing strategy. Interactive Learning Environments, 24 (3), 456–471. https://doi.org/10.1080/10494820.2013.867889

Tsagris, M., & Fragkos, K. C. (2018). Meta-analyses of clinical trials versus diagnostic test accuracy studies. In G. Biondi-Zoccai (Ed.), Diagnostic meta-analysis: A useful tool for clinical decision-making (pp. 31–42). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78966-8_4

UNESCO. (2020, Match 13). COVID-19 educational disruption and response. Retrieved on the 14 th November 2020 from https://en.unesco.org/themes/education-emergencies/ coronavirus-school-closures

Usta, E. (2011a). The effect of web-based learning environments on attitudes of students regarding computer and internet. Procedia-Social and Behavioral Sciences, 28 (262–269), 1. https://doi.org/10.1016/j.sbspro.2011.11.051

Usta, E. (2011b). The examination of online self-regulated learning skills in web-based learning environments in terms of different variables. Turkish Online Journal of Educational Technology-TOJET, 10 (3), 278–286. Retrieved on the 14th November 2020 from https://files.eric.ed.gov/fulltext/EJ944994.pdf

Vrasidas, C. & MsIsaac, M. S. (2000). Principles of pedagogy and evaluation for web-based learning. Educational Media International, 37 (2), 105–111. https://doi.org/10.1080/095239800410405

*Wang, C. H., & Chen, C. P. (2013). Effects of facebook tutoring on learning english as a second language. Proceedings of the International Conference e-Learning 2013, (2009), 135–142. Retrieved on the 15th November 2020 from https://files.eric.ed.gov/fulltext/ED562299.pdf

Wei, H. C., & Chou, C. (2020). Online learning performance and satisfaction: Do perceptions and readiness matter? Distance Education, 41 (1), 48–69.

*Yu, F. Y. (2019). The learning potential of online student-constructed tests with citing peer-generated questions. Interactive Learning Environments, 27 (2), 226–241. https://doi.org/10.1080/10494820.2018.1458040

*Yu, F. Y., & Chen, Y. J. (2014). Effects of student-generated questions as the source of online drill-and-practice activities on learning . British Journal of Educational Technology, 45 (2), 316–329. https://doi.org/10.1111/bjet.12036

*Yu, F. Y., & Pan, K. J. (2014). The effects of student question-generation with online prompts on learning. Educational Technology and Society, 17 (3), 267–279. Retrieved on the 15th November 2020 from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.565.643&rep=rep1&type=pdf

*Yu, W. F., She, H. C., & Lee, Y. M. (2010). The effects of web-based/non-web-based problem-solving instruction and high/low achievement on students’ problem-solving ability and biology achievement. Innovations in Education and Teaching International, 47 (2), 187–199. https://doi.org/10.1080/14703291003718927

Zhao, Y., Lei, J., Yan, B, Lai, C., & Tan, S. (2005). A practical analysis of research on the effectiveness of distance education. Teachers College Record, 107 (8). https://doi.org/10.1111/j.1467-9620.2005.00544.x

*Zhong, B., Wang, Q., Chen, J., & Li, Y. (2017). Investigating the period of switching roles in pair programming in a primary school. Educational Technology and Society, 20 (3), 220–233. Retrieved on the 15th November 2020 from https://repository.nie.edu.sg/bitstream/10497/18946/1/ETS-20-3-220.pdf

Download references

Author information

Authors and affiliations.

Primary Education, Ministry of Turkish National Education, Mersin, Turkey

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hakan Ulum .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Ulum, H. The effects of online education on academic success: A meta-analysis study. Educ Inf Technol 27 , 429–450 (2022). https://doi.org/10.1007/s10639-021-10740-8

Download citation

Received : 06 December 2020

Accepted : 30 August 2021

Published : 06 September 2021

Issue Date : January 2022

DOI : https://doi.org/10.1007/s10639-021-10740-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Online education
  • Student achievement
  • Academic success
  • Meta-analysis
  • Find a journal
  • Publish with us
  • Track your research

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

education-logo

Article Menu

research paper about online distance learning

  • Subscribe SciFeed
  • Recommended Articles
  • Author Biographies
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Navigating the new normal: adapting online and distance learning in the post-pandemic era.

research paper about online distance learning

1. Introduction

1.1. background, 1.2. purpose of the review.

  • Highlighting the multifaceted impact of the pandemic on education, including the disruptions caused by school closures and the subsequent shift to remote learning [ 1 ].
  • Exploring innovative approaches and strategies employed by educators to ensure effective online teaching and learning experiences [ 2 , 4 ].
  • Examining the role of technological solutions and platforms in facilitating remote education and their effectiveness in supporting teaching and learning processes [ 4 ].
  • Investigating strategies for promoting student engagement and participation in virtual classrooms, considering the unique challenges and opportunities presented by online and distance learning [ 2 , 3 ].
  • Evaluating the various assessment and evaluation methods employed in online education, considering their validity, reliability, and alignment with learning outcomes [ 4 ].
  • Discussing the importance of supporting student well-being and academic success in the digital environment, addressing the social and emotional aspects of remote learning [ 3 ].
  • Examining the professional development opportunities and resources available for educators to enhance their skills in online teaching and adapt to the changing educational landscape [ 4 ].
  • Addressing equity and accessibility considerations in online and distance learning, developing strategies to ensure equitable opportunities for all learners and mitigate the digital divide [ 1 , 2 ].
  • Identifying key lessons learned and best practices from the experiences of educators and students during the pandemic, providing insights for future educational practices [ 1 , 4 ].
  • Discussing the potential for educational innovation and transformations in teaching and learning practices in the post-pandemic era, considering the lessons learned from the rapid transition to online and distance learning [ 4 ].

1.3. Significance of the Study

  • To provide a comprehensive understanding of the impact of the pandemic on education. UNESCO (2020) reported that the widespread school closures caused by the pandemic disrupted traditional education practices and posed significant challenges for students, educators, and families [ 1 ]. As such, understanding the multifaceted impact of the pandemic is crucial for effective decision making and policy development.
  • To highlight innovative approaches to online teaching and learning. Hodges et al. [ 4 ] emphasized the importance of instructional design principles and the use of educational technology tools in facilitating effective online education [ 4 ] by examining strategies employed by educators during the pandemic. This review paper aims to identify successful practices that can be applied in future online and blended learning environments.
  • To explore the role of technology in supporting remote education. The rapid transition to online and distance learning has required the use of various technological solutions and platforms. With reference to this subject, Hodges et al. (2020) discussed the difference between emergency remote teaching and online learning, highlighting the importance of leveraging technology to create engaging and interactive virtual classrooms [ 4 ].
  • To address equity and accessibility considerations. The pandemic has exacerbated existing inequities in access to education and technology. On this line, UNESCO (2020) emphasized the need to address equity issues and bridge the digital divide to ensure equitable opportunities for all learners. This review paper examines strategies and interventions aimed at promoting equitable access to online and distance learning.
  • To provide insights for future educational practices by analyzing experiences, challenges, and successes encountered during the transition to online and distance learning. This review paper aims to provide valuable insights for educators, policymakers, and researchers. So, lessons learned from the pandemic can inform the development of effective educational policies, teacher training programs, and support systems for students.

1.4. Methodology of Search

2. impact of the covid-19 pandemic on education, 3. transitioning from traditional classrooms to online and distance learning, 4. challenges faced by educators during the lockdown period, 5. strategies for effective online teaching and learning, 6. technological solutions and platforms for remote education, 7. promoting student engagement and participation in the virtual classroom, 8. assessments and evaluation methods in online education, 9. supporting student well-being and academic success in the digital environment, 10. professional development for educators in online teaching, 11. addressing equity and accessibility in online and distance learning, 12. lessons learned and best practices for future educational practices, 13. innovations and transformations in education post-pandemic, 14. policy implications and recommendations for effective online education, 15. ethical considerations in online and distance learning, 16. innovations and practical applications in post-pandemic educational strategies.

  • Impact Analysis Tools: Develop analytical tools to quantify the educational disruptions caused by the pandemic, focusing on metrics like attendance, engagement, and performance shifts due to remote learning.
  • Online Pedagogy Workshops: Create workshops for educators to share and learn innovative online teaching strategies, focusing on interactivity, student-centered learning, and curriculum adaptation for virtual environments.
  • Tech-Integration Frameworks: Develop frameworks for integrating and evaluating the effectiveness of various technological solutions in remote education, including LMS, interactive tools, and AI-based learning supports.
  • Engagement-Boosting Platforms: Create platforms or tools that specifically target student engagement in virtual classrooms, incorporating gamification, interactive content, and real-time feedback mechanisms.
  • Assessment Methodology Guides: Develop guidelines or toolkits for educators to design and implement valid and reliable online assessments aligned with learning outcomes.
  • Well-being Monitoring Systems: Implement systems to monitor and support student well-being in digital learning environments, incorporating mental health resources and social-emotional learning components.
  • Professional Development Portals: Develop online portals offering continuous professional development opportunities for educators, focusing on upskilling in digital pedagogy, content creation, and adaptive learning technologies.
  • Equity and Accessibility Strategies: Formulate and implement strategies to ensure equitable access to online and distance learning, addressing the digital divide through resource distribution, adaptive technologies, and inclusive curriculum design.
  • Best Practices Repository: Create a repository of best practices and lessons learned from the pandemic’s educational challenges, serving as a resource for future educational planning and crisis management.
  • Post-Pandemic Educational Innovation Labs: Establish innovation labs to explore and pilot new teaching and learning practices in the post-pandemic era, emphasizing the integration of traditional and digital pedagogies.

17. Conclusions: Navigating the Path Forward in Online Education

Author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Reuge, N.; Jenkins, R.; Brossard, M.; Soobrayan, B.; Mizunoya, S.; Ackers, J.; Jones, L.; Taulo, W.G. Education response to COVID 19 pandemic, a special issue proposed by UNICEF: Editorial review. Int. J. Educ. Dev. 2021 , 87 , 102485. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wang, C.; Cheng, Z.; Yue, X.-G.; McAleer, M. Risk Management of COVID-19 by Universities in China. J. Risk Financ. Manag. 2020 , 13 , 36. [ Google Scholar ] [ CrossRef ]
  • Bao, W. COVID-19 and Online Teaching in Higher Education: A Case Study of Peking University. Hum. Behav. Emerg. Technol. 2020 , 2 , 113–115. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Hodges, C.B.; Moore, S.; Lockee, B.B.; Trust, T.; Bond, M.A. The Difference between Emergency Remote Teaching and Online Learning ; Educause: Boulder, CO, USA, 2020. [ Google Scholar ]
  • Bashir, A.; Bashir, S.; Rana, K.; Lambert, P.; Vernallis, A. Post-COVID-19 Adaptations; the Shifts towards Online Learning, Hybrid Course Delivery and the Implications for Biosciences Courses in the Higher Education Setting. Front. Educ. 2021 , 6 , 310. [ Google Scholar ] [ CrossRef ]
  • Akpa, V.O.; Akinosi, J.R.; Nwankwere, I.A.; Makinde, G.O.; Ajike, E.O. Strategic Innovation, Digital Dexterity and Service Quality of Selected Quoted Deposit Money Banks in Nigeria. Eur. J. Bus. Innov. Res. 2022 , 10 , 15–35. [ Google Scholar ]
  • Loades, M.E.; Chatburn, E.; Higson-Sweeney, N.; Reynolds, S.; Shafran, R.; Brigden, A.; Linney, C.; McManus, M.N.; Borwick, C.; Crawley, E. Rapid Systematic Review: The Impact of Social Isolation and Loneliness on the Mental Health of Children and Adolescents in the Context of COVID-19. J. Am. Acad. Child Adolesc. Psychiatry 2020 , 59 , 1218–1239.e3. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Van Lancker, W.; Parolin, Z. COVID-19, School Closures, and Child Poverty: A Social Crisis in the Making. Lancet Public Health 2020 , 5 , e243–e244. [ Google Scholar ] [ CrossRef ]
  • Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. Lancet 2020 , 395 , 912–920. [ Google Scholar ] [ CrossRef ]
  • Padmanabhanunni, A.; Pretorius, T.B. Teacher Burnout in the Time of COVID-19: Antecedents and Psychological Consequences. Int. J. Environ. Res. Public Health 2023 , 20 , 4204. [ Google Scholar ] [ CrossRef ]
  • Al Lily, A.E.; Ismail, A.F.; Abunasser, F.M.; Alhajhoj Alqahtani, R.H. Distance Education as a Response to Pandemics: Coronavirus and Arab Culture. Technol. Soc. 2020 , 63 , 101317. [ Google Scholar ] [ CrossRef ]
  • Means, B.; Toyama, Y.; Murphy, R.; Bakia, M.; Jones, K. Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies ; Centre for Learning Technology: Hong Kong, China, 2009. [ Google Scholar ]
  • Picciano, A.G. Theories and Frameworks for Online Education: Seeking an Integrated Model. In A Guide to Administering Distance Learning ; Brill: Leiden, The Netherlands, 2021; pp. 79–103. [ Google Scholar ]
  • Burgstahler, S.E.; Cory, R.C. Universal Design in Higher Education: From Principles to Practice ; Harvard Education Press: Cambridge, MA, USA, 2010. [ Google Scholar ]
  • Nicol, D.J.; Macfarlane-Dick, D. Formative Assessment and Self-regulated Learning: A Model and Seven Principles of Good Feedback Practice. Stud. High. Educ. 2006 , 31 , 199–218. [ Google Scholar ] [ CrossRef ]
  • Stodel, E.J.; Thompson, T.L.; MacDonald, C.J. Learners’ Perspectives on What Is Missing from Online Learning: Interpretations through the Community of Inquiry Framework. Int. Rev. Res. Open Distrib. Learn. 2006 , 7 , 1–24. [ Google Scholar ] [ CrossRef ]
  • Richardson, J.C.; Maeda, Y.; Lv, J.; Caskurlu, S. Social Presence in Relation to Students’ Satisfaction and Learning in the Online Environment: A Meta-Analysis. Comput. Hum. Behav. 2017 , 71 , 402–417. [ Google Scholar ] [ CrossRef ]
  • Mayer, R.E. Using Multimedia for E-learning. J. Comput. Assist. Learn. 2017 , 33 , 403–423. [ Google Scholar ] [ CrossRef ]
  • Swan, K. Building Learning Communities in Online Courses: The Importance of Interaction. Educ. Commun. Inf. 2002 , 2 , 23–49. [ Google Scholar ] [ CrossRef ]
  • Sato, S.N.; Condes Moreno, E.; Villanueva, A.R.; Orquera Miranda, P.; Chiarella, P.; Bermudez, G.; Aguilera, J.F.T.; Clemente-Suárez, V.J. Psychological Impacts of Teaching Models on Ibero-American Educators during COVID-19. Behav. Sci. 2023 , 13 , 957. [ Google Scholar ] [ CrossRef ]
  • Dennen, V.P.; Burner, K.J. The Cognitive Apprenticeship Model in Educational Practice. In Handbook of Research on Educational Communications and Technology ; Routledge: Oxfordshire, UK, 2008; pp. 425–439. [ Google Scholar ]
  • Alturki, U.; Aldraiweesh, A. Application of Learning Management System (LMS) during the COVID-19 Pandemic: A Sustainable Acceptance Model of the Expansion Technology Approach. Sustainability 2021 , 13 , 10991. [ Google Scholar ] [ CrossRef ]
  • Sun, A.; Chen, X. Online Education and Its Effective Practice: A Research Review. J. Inf. Technol. Educ. 2016 , 15 , 157–190. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • AIKTC; CITEL. Three Days National Conference on Innovative Teaching & Exuberant Learning (NCiTeL 2021) ; AIKTC: Navi Mumbai, India, 2021. [ Google Scholar ]
  • Coggi, C. Innovare La Didattica e La Valutazione in Università: Il Progetto IRIDI per La Formazione Dei Docenti. In Innovare la Didattica e la Valutazione in Università ; Franco Angeli Edizioni: Milano, Italy, 2019; pp. 1–361. [ Google Scholar ]
  • Hawa, D.M.; Ghoniem, E.; Saad, A.M. Integrating Problem-Based Learning Into Blended Learning To Enhance Students’ Programming Skills. J. Posit. Sch. Psychol. 2022 , 6 , 4479–4497. [ Google Scholar ]
  • Lee, E.; Hannafin, M.J. A Design Framework for Enhancing Engagement in Student-Centered Learning: Own It, Learn It, and Share It. Educ. Technol. Res. Dev. 2016 , 64 , 707–734. [ Google Scholar ] [ CrossRef ]
  • Mayer, R.E. How Multimedia Can Improve Learning and Instruction. In The Cambridge Handbook of Cognition and Education ; Cambridge University Press: Cambridge, UK, 2019. [ Google Scholar ]
  • Dillenbourg, P.; Järvelä, S.; Fischer, F. The Evolution of Research on Computer-Supported Collaborative Learning BT-Technology-Enhanced Learning: Principles and Products ; Balacheff, N., Ludvigsen, S., de Jong, T., Lazonder, A., Barnes, S., Eds.; Springer: Dordrecht, The Netherlands, 2009. [ Google Scholar ]
  • McNair, D.E.; Palloff, R.M.; Pratt, K. Lessons from the Virtual Classroom: The Realities of Online Teaching ; SAGE Publications: Los Angeles, CA, USA, 2015. [ Google Scholar ]
  • Baran, E.; Correia, A.-P. A Professional Development Framework for Online Teaching. TechTrends 2014 , 58 , 95–101. [ Google Scholar ] [ CrossRef ]
  • Gikandi, J.W.; Morrow, D.; Davis, N.E. Online Formative Assessment in Higher Education: A Review of the Literature. Comput. Educ. 2011 , 57 , 2333–2351. [ Google Scholar ] [ CrossRef ]
  • Conole, G. Designing for Learning in an Open World ; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 4. [ Google Scholar ]
  • Black, P.; Wiliam, D. The Formative Purpose: Assessment Must First Promote Learning. Yearb. Natl. Soc. Study Educ. 2004 , 103 , 20–50. [ Google Scholar ] [ CrossRef ]
  • Ruiz-Primo, M.A.; Briggs, D.; Iverson, H.; Talbot, R.; Shepard, L.A. Impact of Undergraduate Science Course Innovations on Learning. Science 2011 , 331 , 1269–1270. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ismail, S.M.; Rahul, D.R.; Patra, I.; Rezvani, E. Formative vs. Summative Assessment: Impacts on Academic Motivation, Attitude toward Learning, Test Anxiety, and Self-Regulation Skill. Lang. Test. Asia 2022 , 12 , 40. [ Google Scholar ] [ CrossRef ]
  • Nitko, A.J. Educational Assessment of Students ; ERIC: Washington, DC, USA, 1996. [ Google Scholar ]
  • Cherner, T.; Halpin, P. Determining the Educational Value of Virtual Reality Apps Using Content Analysis. J. Interact. Learn. Res. 2021 , 32 , 245–280. [ Google Scholar ]
  • Pirker, B.; Smolka, J. International Law and Linguistics: Pieces of an Interdisciplinary Puzzle. J. Int. Disput. Settl. 2020 , 11 , 501–521. [ Google Scholar ] [ CrossRef ]
  • Panda, S. Analyzing Effectiveness of Learning Management System in Present Scenario: Conceptual Background and Practical Implementation. Int. J. Innov. Res. Adv. Stud. 2020 , 7 , 40–50. [ Google Scholar ]
  • Coghlan, S.; Miller, T.; Paterson, J. Good Proctor or “Big Brother”? Ethics of Online Exam Supervision Technologies. Philos. Technol. 2021 , 34 , 1581–1606. [ Google Scholar ] [ CrossRef ]
  • Shute, V.J.; Rahimi, S. Review of Computer-based Assessment for Learning in Elementary and Secondary Education. J. Comput. Assist. Learn. 2017 , 33 , 1–19. [ Google Scholar ] [ CrossRef ]
  • Landers, R.N.; Callan, R.C. Casual Social Games as Serious Games: The Psychology of Gamification in Undergraduate Education and Employee Training. In Serious Games and Edutainment Applications ; Springer: London, UK, 2011; pp. 399–423. [ Google Scholar ]
  • Hattie, J.; Timperley, H. The Power of Feedback. Rev. Educ. Res. 2007 , 77 , 81–112. [ Google Scholar ] [ CrossRef ]
  • Schraw, G.; Crippen, K.J.; Hartley, K. Promoting Self-Regulation in Science Education: Metacognition as Part of a Broader Perspective on Learning. Res. Sci. Educ. 2006 , 36 , 111–139. [ Google Scholar ] [ CrossRef ]
  • Przybylski, A.K.; Murayama, K.; DeHaan, C.R.; Gladwell, V. Motivational, Emotional, and Behavioral Correlates of Fear of Missing Out. Comput. Hum. Behav. 2013 , 29 , 1841–1848. [ Google Scholar ] [ CrossRef ]
  • Bereznowski, P.; Atroszko, P.A.; Konarski, R. Work Addiction, Work Engagement, Job Burnout, and Perceived Stress: A Network Analysis. Front. Psychol. 2023 , 14 , 1130069. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Brock, A. Mitigating Burnout and Promoting Professional Well-Being in Advisors. In Academic Advising Administration ; Routledge: Oxfordshire, UK, 2023; pp. 332–344. [ Google Scholar ]
  • Rovai, A.P.; Barnum, K.T. On-Line Course Effectiveness: An Analysis of Student Interactions and Perceptions of Learning. Int. J. E-Learn. Distance Educ. Int. Du E-Learn. La Form. Distance 2003 , 18 , 57–73. [ Google Scholar ]
  • Topping, K.J. Trends in Peer Learning. Educ. Psychol. 2005 , 25 , 631–645. [ Google Scholar ] [ CrossRef ]
  • Shea, P.; Li, C.S.; Pickett, A. A Study of Teaching Presence and Student Sense of Learning Community in Fully Online and Web-Enhanced College Courses. Internet High. Educ. 2006 , 9 , 175–190. [ Google Scholar ] [ CrossRef ]
  • Wiggins, G. Educative Assessment. Designing Assessments To Inform and Improve Student Performance ; ERIC: Washington, DC, USA, 1998. [ Google Scholar ]
  • Yukselturk, E.; Bulut, S. Predictors for Student Success in an Online Course. J. Educ. Technol. Soc. 2007 , 10 , 71–83. [ Google Scholar ]
  • Deci, E.L.; Ryan, R.M. The “What” and “Why” of Goal Pursuits: Human Needs and the Self-Determination of Behavior. Psychol. Inq. 2000 , 11 , 227–268. [ Google Scholar ] [ CrossRef ]
  • Locke, E.A.; Latham, G.P. A Theory of Goal Setting & Task Performance ; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1990. [ Google Scholar ]
  • Salmon, G. E-Tivities: The Key to Active Online Learning ; Routledge: Oxfordshire, UK, 2013. [ Google Scholar ]
  • Koehler, M.; Mishra, P. What Is Technological Pedagogical Content Knowledge (TPACK)? Contemp. Issues Technol. Teach. Educ. 2009 , 9 , 60–70. [ Google Scholar ] [ CrossRef ]
  • Petretto, D.R.; Carta, S.M.; Cataudella, S.; Masala, I.; Mascia, M.L.; Penna, M.P.; Piras, P.; Pistis, I.; Masala, C. The Use of Distance Learning and E-Learning in Students with Learning Disabilities: A Review on the Effects and Some Hint of Analysis on the Use during COVID-19 Outbreak. Clin. Pract. Epidemiol. Ment. Health 2021 , 17 , 92–102. [ Google Scholar ] [ CrossRef ]
  • Lodder, J.; Heeren, B.; Jeuring, J. A Comparison of Elaborated and Restricted Feedback in LogEx, a Tool for Teaching Rewriting Logical Formulae. J. Comput. Assist. Learn. 2019 , 35 , 620–632. [ Google Scholar ] [ CrossRef ]
  • Kocdar, S.; Bozkurt, A. Supporting Learners with Special Needs in Open, Distance, and Digital Education. In Handbook of Open, Distance and Digital Education ; Springer: Singapore, 2022; pp. 1–16. [ Google Scholar ]
  • Tsai, Y.-S.; Rates, D.; Moreno-Marcos, P.M.; Muñoz-Merino, P.J.; Jivet, I.; Scheffel, M.; Drachsler, H.; Kloos, C.D.; Gašević, D. Learning Analytics in European Higher Education—Trends and Barriers. Comput. Educ. 2020 , 155 , 103933. [ Google Scholar ] [ CrossRef ]
  • Ladson-Billings, G. Culturally Relevant Pedagogy 2.0: Aka the Remix. Harv. Educ. Rev. 2014 , 84 , 74–84. [ Google Scholar ] [ CrossRef ]
  • Means, B.; Bakia, M.; Murphy, R. Learning Online: What Research Tells Us about Whether, When and How ; Routledge: Oxfordshire, UK, 2014. [ Google Scholar ]
  • Gray, J.A.; DiLoreto, M. The Effects of Student Engagement, Student Satisfaction, and Perceived Learning in Online Learning Environments. Int. J. Educ. Leadersh. Prep. 2016 , 11 , n1. [ Google Scholar ]
  • Garrison, D.R.; Cleveland-Innes, M. Facilitating Cognitive Presence in Online Learning: Interaction Is Not Enough. Am. J. Distance Educ. 2005 , 19 , 133–148. [ Google Scholar ] [ CrossRef ]
  • Darling-Hammond, L.; Hyler, M.E.; Gardner, M. Effective Teacher Professional Development ; Learning Policy Institute: Palo Alto, CA, USA, 2017. [ Google Scholar ]
  • Garrison, D.R.; Vaughan, N.D. Blended Learning in Higher Education: Framework, Principles, and Guidelines ; John Wiley & Sons: Hoboken, NJ, USA, 2008. [ Google Scholar ]
  • Vygotsky, L.S.; Cole, M. Mind in Society: Development of Higher Psychological Processes ; Harvard University Press: Cambridge, MA, USA, 1978. [ Google Scholar ]
  • Burlacu, M.; Coman, C.; Bularca, M.C. Blogged into the System: A Systematic Review of the Gamification in e-Learning before and during the COVID-19 Pandemic. Sustainability 2023 , 15 , 6476. [ Google Scholar ] [ CrossRef ]
  • Yamani, H.A. A Conceptual Framework for Integrating Gamification in eLearning Systems Based on Instructional Design Model. Int. J. Emerg. Technol. Learn. 2021 , 16 , 14. [ Google Scholar ] [ CrossRef ]
  • Siemens, G.; Baker, R.S.J.d. Learning Analytics and Educational Data Mining: Towards Communication and Collaboration. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, Vancouver, BC, Canada, 29 April–2 May 2012; pp. 252–254. [ Google Scholar ]
  • Li, L. Reskilling and Upskilling the Future-Ready Workforce for Industry 4.0 and Beyond. Inf. Syst. Front. 2022 . [ Google Scholar ] [ CrossRef ]
  • Lythreatis, S.; Singh, S.K.; El-Kassar, A.-N. The Digital Divide: A Review and Future Research Agenda. Technol. Forecast. Soc. Change 2022 , 175 , 121359. [ Google Scholar ] [ CrossRef ]
  • Tawfik, A.A.; Shepherd, C.E.; Gatewood, J.; Gish-Lieberman, J.J. First and Second Order Barriers to Teaching in K-12 Online Learning. TechTrends 2021 , 65 , 925–938. [ Google Scholar ] [ CrossRef ]
  • Muñoz, F.; Matus, O.; Pérez, C.; Fasce, E. Blended Learning y El Desarrollo de La Comunicación Científica En Un Programa de Especialización Dental. Investig. En Educ. Médica 2017 , 6 , 180–189. [ Google Scholar ] [ CrossRef ]
  • Barbour, M.K. Introducing a Special Collection of Papers on K-12 Online Learning and Continuity of Instruction after Emergency Remote Teaching. TechTrends 2022 , 66 , 298–300. [ Google Scholar ] [ CrossRef ]
  • Khalil, M.; Slade, S.; Prinsloo, P. Learning Analytics in Support of Inclusiveness and Disabled Students: A Systematic Review. J. Comput. High. Educ. 2023 , 1–18. [ Google Scholar ] [ CrossRef ]
  • Prinsloo, P.; Slade, S. Student Privacy Self-Management: Implications for Learning Analytics. In Proceedings of the Fifth International Conference on Learning Analytics and Knowledge, Poughkeepsie, NY, USA, 16–20 March 2015; pp. 83–92. [ Google Scholar ]
  • Watson, G.R.; Sottile, J. Cheating in the Digital Age: Do Students Cheat More in Online Courses? Online J. Distance Learn. Adm. 2010 , 13 , 798–803. [ Google Scholar ]
  • Bhattacharya, S.; Murthy, V.; Bhattacharya, S. The Social and Ethical Issues of Online Learning during the Pandemic and Beyond. Asian J. Bus. Ethics 2022 , 11 , 275–293. [ Google Scholar ] [ CrossRef ]
  • Yadav, K.K.; Reddy, L.J. Psychological effects of technology on college students. J. Clin. Otorhinolaryngol. Head Neck Surg. 2023 , 27 , 1805–1816. [ Google Scholar ]
  • Martin, F.; Bolliger, D.U. Engagement Matters: Student Perceptions on the Importance of Engagement Strategies in the Online Learning Environment. Online Learn. 2018 , 22 , 205–222. [ Google Scholar ] [ CrossRef ]
  • Clemente-Suárez, V.J.; Dalamitros, A.A.; Beltran-Velasco, A.I.; Mielgo-Ayuso, J.; Tornero-Aguilera, J.F. Social and psychophysiological consequences of the COVID-19 pandemic: An extensive literature review. Front. Psychol. 2020 , 11 , 3077. [ Google Scholar ] [ CrossRef ]
  • Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Jimenez, M.; Hormeño-Holgado, A.; Martinez-Gonzalez, M.B.; Benitez-Agudelo, J.C.; Perez-Palencia, N.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Impact of COVID-19 Pandemic in Public Mental Health: An Extensive Narrative Review. Sustainability 2021 , 13 , 3221. [ Google Scholar ] [ CrossRef ]
  • Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Moreno-Luna, L.; Saavedra-Serrano, M.C.; Jimenez, M.; Simón, J.A.; Tornero-Aguilera, J.F. The Impact of the COVID-19 Pandemic on Social, Health, and Economy. Sustainability 2021 , 13 , 6314. [ Google Scholar ] [ CrossRef ]
  • Rodriguez-Besteiro, S.; Beltran-Velasco, A.I.; Tornero-Aguilera, J.F.; Martínez-González, M.B.; Navarro-Jiménez, E.; Yáñez-Sepúlveda, R.; Clemente-Suárez, V.J. Social Media, Anxiety and COVID-19 Lockdown Measurement Compliance. Int. J. Environ. Res. Public Health 2023 , 20 , 4416. [ Google Scholar ] [ CrossRef ]
  • Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Simón-Sanjurjo, J.A.; Beltran-Velasco, A.I.; Laborde-Cárdenas, C.C.; Benitez-Agudelo, J.C.; Bustamante-Sánchez, Á.; Tornero-Aguilera, J.F. Mis–Dis Information in COVID-19 Health Crisis: A Narrative Review. Int. J. Environ. Res. Public Health 2022 , 19 , 5321. [ Google Scholar ] [ CrossRef ]
  • Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Ruisoto, P.; Dalamitros, A.A.; Beltran-Velasco, A.I.; Hormeño-Holgado, A.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Performance of Fuzzy Multi-Criteria Decision Analysis of Emergency System in COVID-19 Pandemic. An Extensive Narrative Review. Int. J. Environ. Res. Public Health 2021 , 18 , 5208. [ Google Scholar ] [ CrossRef ]
  • Sato, S.N.; Condes Moreno, E.; Rico Villanueva, A.; Orquera Miranda, P.; Chiarella, P.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Cultural Differences between University Students in Online Learning Quality and Psychological Profile during COVID-19. J. Risk Financ. Manag. 2022 , 15 , 555. [ Google Scholar ] [ CrossRef ]
  • Nomie-Sato, S.; Condes Moreno, E.; Villanueva, A.R.; Chiarella, P.; Tornero-Aguilera, J.F.; Beltrán-Velasco, A.I.; Clemente-Suárez, V.J. Gender Differences of University Students in the Online Teaching Quality and Psychological Profile during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022 , 19 , 14729. [ Google Scholar ] [ CrossRef ]
  • Williamson, B.; Macgilchrist, F.; Potter, J. COVID-19 controversies and critical research in digital education. Learn. Media Technol. 2021 , 46 , 117–127. [ Google Scholar ] [ CrossRef ]
  • Brammer, S.; Clark, T. COVID-19 and management education: Reflections on challenges, opportunities, and potential futures. Br. J. Manag. 2020 , 31 , 453. [ Google Scholar ] [ CrossRef ]
  • Peytcheva-Forsyth, R.V.; Aleksieva, L.K. The effect of the teachers’ experience in online education during the pandemic on their views of strengths and weaknesses of e-learning (SU case). In Proceedings of the 22nd International Conference on Computer Systems and Technologies, Ruse, Bulgaria, 18–19 June 2021; pp. 1–11. [ Google Scholar ]
  • Nguyen, T.; Netto, C.L.M.; Wilkins, J.F.; Bröker, P.; Vargas, E.E.; Sealfon, C.D.; Puthipiroj, P.; Li, K.S.; Bowler, J.E.; Hinson, H.R.; et al. Insights into students’ experiences and perceptions of remote learning methods: From the COVID-19 pandemic to best practice for the future. Front. Educ. 2021 , 6 , 91. [ Google Scholar ] [ CrossRef ]
  • Goudeau, S.; Sanrey, C.; Stanczak, A.; Manstead, A.; Darnon, C. Why lockdown and distance learning during the COVID-19 pandemic are likely to increase the social class achievement gap. Nat. Hum. Behav. 2021 , 5 , 1273–1281. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.; Ding, Y.; Yang, X.; Zhong, J.; Qiu, X.; Zou, Z.; Xu, Y.; Jin, X.; Wu, X.; Huang, J.; et al. COVID-19′s impacts on the scope, effectiveness, and interaction characteristics of online learning: A social network analysis. PLoS ONE 2022 , 17 , e0273016. [ Google Scholar ] [ CrossRef ]
  • Munoz-Najar, A.; Gilberto, A.; Hasan, A.; Cobo, C.; Azevedo, J.P.; Akmal, M. Remote Learning during COVID-19: Lessons from Today, Principles for Tomorrow ; World Bank: Washington, DC, USA, 2021. [ Google Scholar ]
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Sato, S.N.; Condes Moreno, E.; Rubio-Zarapuz, A.; Dalamitros, A.A.; Yañez-Sepulveda, R.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Navigating the New Normal: Adapting Online and Distance Learning in the Post-Pandemic Era. Educ. Sci. 2024 , 14 , 19. https://doi.org/10.3390/educsci14010019

Sato SN, Condes Moreno E, Rubio-Zarapuz A, Dalamitros AA, Yañez-Sepulveda R, Tornero-Aguilera JF, Clemente-Suárez VJ. Navigating the New Normal: Adapting Online and Distance Learning in the Post-Pandemic Era. Education Sciences . 2024; 14(1):19. https://doi.org/10.3390/educsci14010019

Sato, Simone Nomie, Emilia Condes Moreno, Alejandro Rubio-Zarapuz, Athanasios A. Dalamitros, Rodrigo Yañez-Sepulveda, Jose Francisco Tornero-Aguilera, and Vicente Javier Clemente-Suárez. 2024. "Navigating the New Normal: Adapting Online and Distance Learning in the Post-Pandemic Era" Education Sciences 14, no. 1: 19. https://doi.org/10.3390/educsci14010019

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

MINI REVIEW article

Distance learning in higher education during covid-19.

\r\nAlfiya R. Masalimova*&#x;

  • 1 Department of Pedagogy of Higher Education, Kazan (Volga Region) Federal University, Kazan, Russia
  • 2 Department of Jurisprudence, Bauman Moscow State Technical University, Moscow, Russia
  • 3 Department of English for Professional Communication, Financial University under the Government of the Russian Federation, Moscow, Russia
  • 4 Department of Foreign Languages, RUDN University, Moscow, Russia
  • 5 Department of Medical and Social Assessment, Emergency, and Ambulatory Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

COVID-19’s pandemic has hastened the expansion of online learning across all levels of education. Countries have pushed to expand their use of distant education and make it mandatory in view of the danger of being unable to resume face-to-face education. The most frequently reported disadvantages are technological challenges and the resulting inability to open the system. Prior to the pandemic, interest in distance learning was burgeoning, as it was a unique style of instruction. The mini-review aims to ascertain students’ attitudes about distant learning during COVID-19. To accomplish the objective, articles were retrieved from the ERIC database. We utilize the search phrases “Distance learning” AND “University” AND “COVID.” We compiled a list of 139 articles. We chose papers with “full text” and “peer reviewed only” sections. Following the exclusion, 58 articles persisted. Then, using content analysis, publications relating to students’ perspectives on distance learning were identified. There were 27 articles in the final list. Students’ perspectives on distant education are classified into four categories: perception and attitudes, advantages of distance learning, disadvantages of distance learning, and challenges for distance learning. In all studies, due of pandemic constraints, online data gathering methods were selected. Surveys and questionnaires were utilized as data collection tools. When students are asked to compare face-to-face and online learning techniques, they assert that online learning has the potential to compensate for any limitations caused by pandemic conditions. Students’ perspectives and degrees of satisfaction range widely, from good to negative. Distance learning is advantageous since it allows for learning at any time and from any location. Distance education benefits both accomplishment and learning. Staying at home is safer and less stressful for students during pandemics. Distance education contributes to a variety of physical and psychological health concerns, including fear, anxiety, stress, and attention problems. Many schools lack enough infrastructure as a result of the pandemic’s rapid transition to online schooling. Future researchers can study what kind of online education methods could be used to eliminate student concerns.

Introduction

The pandemic of COVID-19 has accelerated the spread of online learning at all stages of education, from kindergarten to higher education. Prior to the epidemic, several colleges offered online education. However, as a result of the epidemic, several governments discontinued face-to-face schooling in favor of compulsory distance education.

The COVID-19 problem had a detrimental effect on the world’s educational system. As a result, educational institutions around the world developed a new technique for delivering instructional programs ( Graham et al., 2020 ; Akhmadieva et al., 2021 ; Gaba et al., 2021 ; Insorio and Macandog, 2022 ; Tal et al., 2022 ). Distance education has been the sole choice in the majority of countries throughout this period, and these countries have sought to increase their use of distance education and make it mandatory in light of the risk of not being able to restart face-to-face schooling ( Falode et al., 2020 ; Gonçalves et al., 2020 ; Tugun et al., 2020 ; Altun et al., 2021 ; Valeeva and Kalimullin, 2021 ; Zagkos et al., 2022 ).

What Is Distance Learning

Britannica defines distance learning as “form of education in which the main elements include physical separation of teachers and students during instruction and the use of various technologies to facilitate student-teacher and student-student communication” ( Simonson and Berg, 2016 ). The subject of distant learning has been studied extensively in the fields of pedagogics and psychology for quite some time ( Palatovska et al., 2021 ).

The primary distinction is that early in the history of distant education, the majority of interactions between professors and students were asynchronous. With the advent of the Internet, synchronous work prospects expanded to include anything from chat rooms to videoconferencing services. Additionally, asynchronous material exchange was substantially relocated to digital settings and communication channels ( Virtič et al., 2021 ).

Distance learning is a fundamentally different way to communication as well as a different learning framework. An instructor may not meet with pupils in live broadcasts at all in distance learning, but merely follow them in a chat if required ( Bozkurt and Sharma, 2020 ). Audio podcasts, films, numerous simulators, and online quizzes are just a few of the technological tools available for distance learning. The major aspect of distance learning, on the other hand, is the detailed tracking of a student’s performance, which helps to develop his or her own trajectory. While online learning attempts to replicate classroom learning methods, distant learning employs a computer game format, with new levels available only after the previous ones have been completed ( Bakhov et al., 2021 ).

In recent years, increased attention has been placed on eLearning in educational institutions because to the numerous benefits that have been discovered via study. These advantages include the absence of physical and temporal limits, the ease of accessing material and scheduling flexibility, as well as the cost-effectiveness of the solution. A number of other studies have demonstrated that eLearning is beneficial to both student gains and student performance. However, in order to achieve the optimum results from eLearning, students must be actively participating in the learning process — a notion that is commonly referred to as active learning — throughout the whole process ( Aldossary, 2021 ; Altun et al., 2021 ).

The most commonly mentioned negatives include technological difficulties and the inability to open the system as a result, low teaching quality, inability to teach applicable disciplines, and a lack of courses, contact, communication, and internet ( Altun et al., 2021 ). Also, misuse of technology, adaptation of successful technology-based training to effective teaching methods, and bad practices in managing the assessment and evaluation process of learning are all downsides of distance learning ( Debeş, 2021 ).

Distance Learning in a Pandemic Context

The epidemic forced schools, colleges, and institutions throughout the world to close their doors so that students might practice social isolation ( Toquero, 2020 ). Prior to the pandemic, demand for distance learning was nascent, as it was a novel mode of education, the benefits and quality of which were difficult to judge due to a dearth of statistics. But, in 2020, humanity faced a coronavirus pandemic, which accelerated the shift to distant learning to the point that it became the only viable mode of education and communication ( Viktoria and Aida, 2020 ). Due to the advancements in digital technology, educators and lecturers have been obliged to use E-learning platforms ( Benadla and Hadji, 2021 ).

In remote education settings for higher education, activities are often divided into synchronous course sessions and asynchronous activities and tasks. In synchronous courses, learners participate in interactive and targeted experiences that help them develop a fundamental grasp of technology-enhanced education, course design, and successful online instruction. Asynchronous activities and tasks, on the other hand, include tests, group work assignments, group discussion, feedback, and projects. Additionally, asynchronous activities and tasks are carried out via interactive video-based activities, facilitator meetings, live webinars, and keynote speakers ( Debeş, 2021 ).

According to Lamanauskas and Makarskaitė-Petkevičienė (2021) , ICT should be attractive for learners. Additionally, student satisfaction with ODL has a statistically significant effect on their future choices for online learning ( Virtič et al., 2021 ). According to Avsheniuk et al. (2021) , the majority of research is undertaken to categorize students’ views and attitudes about online learning, and studies examining students’ perspectives of online learning during the COVID-19 epidemic are uncommon and few. There is presently a dearth of research on the impact on students when schools are forced to close abruptly and indefinitely and transition to online learning communities ( Unger and Meiran, 2020 ). So that, the mini-review is aimed to examining the students’ views on using distance learning during COVID-19.

In order to perform the aim, the articles were searched through ERIC database. We use “Distance learning” AND “University” AND “COVID” as search terms. We obtained 139 articles. We selected “full text” and “Peer reviewed only” articles. After the exclusion, 58 articles endured. Then content analyses were used to determine articles related to students’ voices about distance learning. In the final list, there were 27 articles ( Table 1 ).

www.frontiersin.org

Table 1. Countries and data collection tools.

In the study, a qualitative approach and content analyses were preferred. Firstly, the findings related to students’ attitudes and opinions on distance learning were determined. The research team read selected sections independently. Researchers have come to a consensus on the themes of perception and attitudes, advantages of distance learning, disadvantages of distance learning, and challenges for distance learning. It was decided which study would be included in which theme/s. Finally, the findings were synthesized under themes.

Only 3 studies ( Lassoued et al., 2020 ; Viktoria and Aida, 2020 ; Todri et al., 2021 ) were conducted to cover more than one country. Other studies include only one country. Surveys and questionnaires were mostly used as measurement tools in the study. Due to pandemic restrictions, online data collection approaches were preferred in the data collection process.

Students’ views on distance learning are grouped under four themes. These themes are perception and attitudes, advantages of distance learning, disadvantages of distance learning, and challenges for distance learning.

Perception and Attitudes Toward Distance Learning

Students’ attitudes toward distance learning differ according to the studies. In some studies ( Mathew and Chung, 2020 ; Avsheniuk et al., 2021 ), it is stated that especially the students’ attitudes are positive, while in some studies ( Bozavlı, 2021 ; Yurdal et al., 2021 ) it is clearly stated that their attitudes are negative. In addition, there are also studies ( Akcil and Bastas, 2021 ) that indicate that students’ attitudes are at a moderate level. The transition to distance learning has been a source of anxiety for some students ( Unger and Meiran, 2020 ).

When the students’ satisfaction levels are analyzed, it is obvious from the research ( Gonçalves et al., 2020 ; Avsheniuk et al., 2021 ; Bakhov et al., 2021 ; Glebov et al., 2021 ; Todri et al., 2021 ) that the students’ satisfaction levels are high. In some studies, it is pronounced that the general satisfaction level of the participants is moderate ( Viktoria and Aida, 2020 ; Aldossary, 2021 ; Didenko et al., 2021 ) and low ( Taşkaya, 2021 ).

When students compare face-to-face and online learning methods, they state that online learning has opportunities to compensate for their deficiencies due to the pandemic conditions ( Abrosimova, 2020 ) and but they prefer face-to-face learning ( Gonçalves et al., 2020 ; Kaisar and Chowdhury, 2020 ; Bakhov et al., 2021 ). Distance learning is not sufficiently motivating ( Altun et al., 2021 ; Bozavlı, 2021 ), effective ( Beltekin and Kuyulu, 2020 ; Bozavlı, 2021 ), and does not have a contribution to students’ knowledge ( Taşkaya, 2021 ). Distance education cannot be used in place of face-to-face instruction ( Aldossary, 2021 ; Altun et al., 2021 ).

Advantages of Distance Learning

It is mostly cited advantages that distance learning has a positive effect on achievement and learning ( Gonçalves et al., 2020 ; Lin and Gao, 2020 ; Aldossary, 2021 ; Altun et al., 2021 ; Şahin, 2021 ). In addition, in distance learning, students can have more resources and reuse resources such as re-watching video ( Önöral and Kurtulmus-Yilmaz, 2020 ; Lamanauskas and Makarskaitė-Petkevičienė, 2021 ; Martha et al., 2021 ).

Distance learning for the reason any time and everywhere learning ( Adnan and Anwar, 2020 ; Lamanauskas and Makarskaitė-Petkevičienė, 2021 ; Todri et al., 2021 ). There is no need to spend money on transportation to and from the institution ( Lamanauskas and Makarskaitė-Petkevičienė, 2021 ; Nenakhova, 2021 ). Also, staying at home is safe during pandemics and less stressful for students ( Lamanauskas and Makarskaitė-Petkevičienė, 2021 ).

Challenges and Disadvantages of Distance Learning

Distance learning cannot guarantee effective learning, the persistence of learning, or success ( Altun et al., 2021 ; Benadla and Hadji, 2021 ). Students state that they have more works, tasks, and study loads in the distance learning process ( Mathew and Chung, 2020 ; Bakhov et al., 2021 ; Didenko et al., 2021 ; Nenakhova, 2021 ). Group working and socialization difficulties are experienced in distance learning ( Adnan and Anwar, 2020 ; Bozavlı, 2021 ; Lamanauskas and Makarskaitė-Petkevičienė, 2021 ). The absence of communication and face-to-face interaction is seen a disadvantage ( Didenko et al., 2021 ; Nenakhova, 2021 ).

It is difficult to keep attention on the computer screen for a long time, so distance-learning negatively affects concentration ( Bakhov et al., 2021 ; Lamanauskas and Makarskaitė-Petkevičienė, 2021 ). In addition, distance education prompts some physical and psychological health problems ( Kaisar and Chowdhury, 2020 ; Taşkaya, 2021 ).

Devices and internet connection, technical problems are mainly stated as challenges for distance learning ( Abrosimova, 2020 ; Adnan and Anwar, 2020 ; Mathew and Chung, 2020 ; Bakhov et al., 2021 ; Benadla and Hadji, 2021 ; Didenko et al., 2021 ; Lamanauskas and Makarskaitė-Petkevičienė, 2021 ; Nenakhova, 2021 ; Taşkaya, 2021 ; Şahin, 2021 ). In addition, some students have difficulties in finding a quiet and suitable environment where they can follow distance education courses ( Taşkaya, 2021 ). It is a disadvantage that students have not the knowledge and skills to use the technological tools used in distance education ( Lassoued et al., 2020 ; Bakhov et al., 2021 ; Didenko et al., 2021 ).

The purpose of this study is to ascertain university students’ perceptions about distant education during COVID-19. The study’s findings are intended to give context for developers of distant curriculum and higher education institutions.

According to Toquero (2020) , academic institutions have an increased need to enhance their curricula, and the incorporation of innovative teaching methods and tactics should be a priority. COVID-19’s lockout has shown the reality of higher education’s current state: Progressive universities operating in the twenty-first century did not appear to be prepared to implement digital teaching and learning tools; existing online learning platforms were not universal solutions; teaching staff were not prepared to teach remotely; their understanding of online teaching was sometimes limited to sending handbooks, slides, sample tasks, and assignments to students via email and setting deadlines for submission of completed tasks ( Didenko et al., 2021 ).

It is a key factor that student satisfaction to identify the influencers that emerged in online higher education settings ( Parahoo et al., 2016 ). Also, there was a significant positive relationship between online learning, social presence and satisfaction with online courses ( Stankovska et al., 2021 ). According to the findings, the attitudes and satisfaction levels of the students differ according to the studies and vary in a wide range from positive to negative attitudes.

According to the study’s findings, students responded that while online learning is beneficial for compensating for deficiencies during the pandemic, they would prefer face-to-face education in the future. This is a significant outcome for institutions. It is not desirable for all students to take their courses entirely online. According to Samat et al. (2020) , the one-size-fits-all approach to ODL implementation is inapplicable since it not only impedes the flow of information delivery inside the virtual classroom, but it also has an impact on psychological well-being because users are prone to become disturbed.

In distance learning, students can have more resources and reuse resources such as re-watching videos. So, distance learning has a positive effect on achievement and learning. Alghamdi (2021) stated that over the last two decades, research on the influence of technology on students’ academic success has revealed a range of good and negative impacts and relationships, as well as zero effects and relationship.

The result also shows that distance education prompts some physical and psychological health problems. Due to the difficulty of maintaining focus on a computer screen for an extended period of time, remote education has a detrimental effect on concentration. There is some evidence that students are fearful of online learning in compared to more traditional, or in-person, in-class learning environments, as well as media representations of emergencies ( Müller-Seitz and Macpherson, 2014 ).

Unsatisfactory equipment and internet connection, technical difficulties, and a lack of expertise about remote learning technology are frequently cited as distance learning issues. Due to the pandemic’s quick move to online education, many schools have an insufficient infrastructure. Infrastructure deficiency is more evident in fields that require laboratory work such as engineering ( Andrzej, 2020 ) and medicine ( Yurdal et al., 2021 ).

Conclusion and Recommendation

To sum up, students’ opinions and levels of satisfaction vary significantly, ranging from positive to negative. Distance learning for the reason any time and everywhere learning. Distance learning has a positive effect on achievement and learning. Staying at home is safe during pandemics and less stressful for students. Distance education prompts some physical and psychological health problems such as fear, anxiety, stress, and losing concentration. Due to the pandemic’s quick move to online education, many schools have an insufficient infrastructure. Future researchers can investigate what distance education models can be that will eliminate the complaints of students. Students’ positive attitudes and levels of satisfaction with their distant education programs have an impact on their ability to profit from the program. Consequently, schools wishing to implement distant education should begin by developing a structure, content, and pedagogical approach that would improve the satisfaction of their students. According to the findings of the study, there is no universally applicable magic formula since student satisfaction differs depending on the country, course content, and external factors.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

This manuscript has been supported by the Kazan Federal University Strategic Academic Leadership Program.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Abrosimova, G. A. (2020). Digital literacy and digital skills in university study. Int. J. High. Educ. 9, 52–58. doi: 10.5430/ijhe.v9n8p52

CrossRef Full Text | Google Scholar

Adnan, M., and Anwar, K. (2020). Online learning amid the COVID-19 pandemic: students perspectives. J. Pedagog. Soc. Psychol. 1, 45–51. doi: 10.33902/JPSP.2020261309

Akhmadieva, R. S., Mikhaylovsky, M. N., Simonova, M. M., Nizamutdinova, S. M., Prokopyev, A. I., and Ostanina, S. S. (2021). Public relations in organizations in sportsman students view: development of management tools or healthy and friendly relations formation. J. Hum. Sport Exerc. 16, 1272–1279. doi: 10.14198/jhse.2021.16.Proc3.43

Akcil, U., and Bastas, M. (2021). Examination of university students’ attitudes towards e-learning during the COVID-19 pandemic process and the relationship of digital citizenship. Contemp. Educ. Technol. 13:e291. doi: 10.30935/CEDTECH/9341

Aldossary, K. (2021). Online distance learning for translation subjects: tertiary level instructors’ and students’ perceptions in Saudi Arabia. Turk. Online J. Distance Educ. 22:6.

Google Scholar

Alghamdi, A. (2021). COVID-19 mandated self-directed distance learning: experiences of Saudi female postgraduate students. J. Univ. Teach. Learn. Pract. 18:014. doi: 10.53761/1.18.3.14

Altun, T., Akyıldız, S., Gülay, A., and Özdemir, C. (2021). Investigating education faculty students’ views about asynchronous distance education practices during COVID-19. Psycho Educ. Res. Rev. 10, 34–45.

Andrzej, O. (2020). Modified blended learning in engineering higher education during the COVID-19 lockdown — building automation courses case study. Educ. Sci. 10:292.

Avsheniuk, N., Seminikhyna, N., Svyrydiuk, T., and Lutsenko, O. (2021). ESP students’ satisfaction with online learning during the COVID-19 pandemic in ukraine. Arab World Engl. J. 1, 222–234. doi: 10.24093/awej/covid.17

Bakhov, I., Opolska, N., Bogus, M., Anishchenko, V., and Biryukova, Y. (2021). Emergency distance education in the conditions of COVID-19 pandemic: experience of Ukrainian universities. Educ. Sci. 11:364. doi: 10.3390/educsci11070364

Beltekin, E., and Kuyulu, İ (2020). The effect of coronavirus (COVID19) outbreak on education systems: evaluation of distance learning system in Turkey. J. Educ. Learn. 9:1. doi: 10.5539/jel.v9n4p1

Benadla, D., and Hadji, M. (2021). EFL students affective attitudes towards distance e-learning based on moodle platform during the COVID-19 the pandemic: perspectives from Dr. Moulaytahar university of Saida, Algeria. Arab World Engl. J. 1, 55–67. doi: 10.24093/awej/covid.4

Bozavlı, E. (2021). Is foreign language teaching possible without school? Distance learning experiences of foreign language students at Ataturk university during the COVID-19 pandemic. Arab World Engl. J. 12, 3–18. doi: 10.24093/awej/vol12no1.1

Bozkurt, A., and Sharma, R. (2020). Emergency remote teaching in a time of global crisis due to CoronaVirus pandemic. Asian J. Distance Educ. 15:2020.

Debeş, G. (2021). Distance learning in higher education during the COVID-19 pandemic: advantages and disadvantages. Int. J. Curr. Instr. 13, 1109–1118.

Didenko, I., Filatova, O., and Anisimova, L. (2021). COVID-19 lockdown challenges or new era for higher education. Propós. Represent. 9:e914. doi: 10.20511/pyr2021.v9nspe1.914

Falode, O. C., Chukwuemeka, E. J., Bello, A., and Baderinwa, T. (2020). Relationship between flexibility of learning, support services and students’ attitude towards distance learning programme in Nigeria. Eur. J. Interact. Multimed. Educ. 1:e02003. doi: 10.30935/ejimed/8320

Gaba, A. K., Bhushan, B., and Kant Rao, D. (2021). Factors influencing the preference of distance learners to study through online during COVID-19 pandemic. Asian J. Distance Educ. 16:2021.

Glebov, V. A., Popov, S. I., Lagusev, Y. M., Krivova, A. L., and Sadekova, S. R. (2021). Distance learning in the humanitarian field amid the coronavirus pandemic: risks of creating barriers and innovative benefits. Propós. Represent. 9:e1258. doi: 10.20511/pyr2021.v9nspe3.1258

Gonçalves, S. P., Sousa, M. J., and Pereira, F. S. (2020). Distance learning perceptions from higher education students—the case of Portugal. Educ. Sci. 10:374. doi: 10.3390/educsci10120374

Graham, S. R., Tolar, A., and Hokayem, H. (2020). Teaching preservice teachers about COVID-19 through distance learning. Electron. J. Res. Sci. Math. Educ. 24, 29–37.

Insorio, A. O., and Macandog, D. M. (2022). Video lessons via youtube channel as mathematics interventions in modular distance learning. Contemp. Math. Sci. Educ. 3:e22001. doi: 10.30935/conmaths/11468

Kaisar, M. T., and Chowdhury, S. Y. (2020). Foreign language virtual class room: anxiety creator or healer? Engl. Lang. Teach. 13:130. doi: 10.5539/elt.v13n11p130

Lamanauskas, V., and Makarskaitė-Petkevičienė, R. (2021). Distance lectures in university studies: advantages, disadvantages, improvement. Contemp. Educ. Technol. 13:e309. doi: 10.30935/cedtech/10887

Lassoued, Z., Alhendawi, M., and Bashitialshaaer, R. (2020). An exploratory study of the obstacles for achieving quality in distance learning during the COVID-19 pandemic. Educ. Sci. 10:232. doi: 10.3390/educsci10090232

Lin, X., and Gao, L. (2020). Students’ sense of community and perspectives of taking synchronous and asynchronous online courses. Asian J. Distance Educ. 15, 169–179. doi: 10.5281/zenodo.3881614

Martha, A. S. D., Junus, K., Santoso, H. B., and Suhartanto, H. (2021). Assessing undergraduate students’ e-learning competencies: a case study of higher education context in Indonesia. Educ. Sci. 11:189. doi: 10.3390/educsci11040189

Mathew, V. N., and Chung, E. (2020). University students’ perspectives on open and distance learning (ODL) implementation amidst COVID-19. Asian J. Univ. Educ. 16, 152–160. doi: 10.24191/ajue.v16i4.11964

Müller-Seitz, G., and Macpherson, A. (2014). Learning during crisis as a ‘war for meaning’: the case of the German Escherichia coli outbreak in 2011. Manag. Learn. 45, 593–608.

Nenakhova, E. (2021). Distance learning practices on the example of second language learning during coronavirus epidemic in Russia. Int. J. Instr. 14, 807–826. doi: 10.29333/iji.2021.14347a

Önöral, Ö, and Kurtulmus-Yilmaz, S. (2020). Influence of COVID-19 pandemic on dental education in cyprus: preclinical and clinical implications with E-learning strategies. Adv. Educ. 7, 69–77.

Palatovska, O., Bondar, M., Syniavska, O., and Muntian, O. (2021). Virtual mini-lecture in distance learning space. Arab World Engl. J. 1, 199–208. doi: 10.24093/awej/covid.15

Parahoo, S. K., Santally, M. I., Rajabalee, Y., and Harvey, H. L. (2016). Designing a predictive model of student satisfaction in online learning. J. Market. High. Educ. 26, 1–19. doi: 10.1080/08841241.2015.1083511

Samat, M. F., Awang, N. A., Hussin, S. N. A., and Nawi, F. A. M. (2020). Online distance learning amidst COVID-19 pandemic among university students: a practicality of partial least squares structural equation modelling approach. Asian J. Univ. Educ. 16, 220–233.

Simonson, M., and Berg, G. A. (2016). Distance Learning. In Encyclopedia Britannica. Available online at: https://www.britannica.com/topic/distance-learning (accessed November 14, 2011).

Stankovska, G., Dimitrovski, D., and Ibraimi, Z. (2021). “Online learning, social presence and satisfaction among university students during the COVID-19 pandemic,” in Paper Presented at the Annual International Conference of the Bulgarian Comparative Education Society (BCES) , (Sofia), 181–188.

Şahin, M. (2021). Opinions of university students on effects of distance learning in Turkey during the COVID-19 pandemic. Afr. Educ. Res. J. 9, 526–543. doi: 10.30918/aerj.92.21.082

Tal, C., Tish, S., and Tal, P. (2022). Parental perceptions of their preschool and elementary school children with respect to teacher-family relations and teaching methods during the first COVID-19 lockdown. Pedagog. Res. 7:em0114. doi: 10.29333/pr/11518

Taşkaya, S. M. (2021). Teacher candidates’ evaluation of the emergency remote teaching practices in turkey during COVID-19 pandemic. Int. J. Progress. Educ. 17, 63–78. doi: 10.29329/ijpe.2021.366.5

Todri, A., Papajorgji, P., Moskowitz, H., and Scalera, F. (2021). Perceptions regarding distance learning in higher education, smoothing the transition. Contemp. Educ. Technol. 13:e287. doi: 10.30935/cedtech/9274

Toquero, C. M. (2020). Challenges and opportunities for higher education amid the COVID-19 pandemic: the Philippine context. Pedagog. Res. 5:em0063. doi: 10.29333/pr/7947

Tugun, V., Bayanova, A. R., Erdyneeva, K. G., Mashkin, N. A., Sakhipova, Z. M., and Zasova, L. V. (2020). The opinions of technology supported education of university students. Int. J. Emerg. Technol. Learn. 15, 4–14. doi: 10.3991/ijet.v15i23.18779

Unger, S., and Meiran, W. (2020). Student attitudes towards online education during the COVID-19 viral outbreak of 2020: distance learning in a time of social distance. Int. J. Technol. Educ. Sci. 4, 256–266. doi: 10.46328/ijtes.v4i4.107

Valeeva, R., and Kalimullin, A. (2021). Adapting or changing: the COVID-19 pandemic and teacher education in Russia. Educ. Sci. 11:408. doi: 10.3390/educsci11080408

Viktoria, V., and Aida, M. (2020). comparative analysis on the impact of distance learning between Russian and Japanese university students, during the pandemic of COVID-19. Educ. Q. Rev. 3:438–446. doi: 10.31014/aior.1993.03.04.151

Virtič, M. P., Dolenc, K., and Šorgo, A. (2021). Changes in online distance learning behaviour of university students during the coronavirus disease 2019 outbreak, and development of the model of forced distance online learning preferences. Eur. J. Educ. Res. 10, 393–411. doi: 10.12973/EU-JER.10.1.393

Yurdal, M. O., Sahin, E. M., Kosan, A. M. A., and Toraman, C. (2021). Development of medical school students’ attitudes towards online learning scale and its relationship with E-learning styles. Turk. Online J. Distance Educ. 22, 310–325. doi: 10.17718/tojde.961855

Zagkos, C., Kyridis, A., Kamarianos, I., Dragouni, K E., Katsanou, A., Kouroumichaki, E., et al. (2022). Emergency remote teaching and learning in greek universities during the COVID-19 pandemic: the attitudes of university students. Eur. J. Interact. Multimed. Educ. 3:e02207. doi: 10.30935/ejimed/11494

Keywords : ICT, distance learning, COVID-19, higher education, online learning

Citation: Masalimova AR, Khvatova MA, Chikileva LS, Zvyagintseva EP, Stepanova VV and Melnik MV (2022) Distance Learning in Higher Education During Covid-19. Front. Educ. 7:822958. doi: 10.3389/feduc.2022.822958

Received: 26 November 2021; Accepted: 14 February 2022; Published: 03 March 2022.

Reviewed by:

Copyright © 2022 Masalimova, Khvatova, Chikileva, Zvyagintseva, Stepanova and Melnik. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Alfiya R. Masalimova, [email protected]

† ORCID: Alfiya R. Masalimova, orcid.org/0000-0003-3711-2527 ; Maria A. Khvatova, orcid.org/0000-0002-2156-8805 ; Lyudmila S. Chikileva, orcid.org/0000-0002-4737-9041 ; Elena P. Zvyagintseva, orcid.org/0000-0001-7078-0805 ; Valentina V. Stepanova, orcid.org/0000-0003-0495-0962 ; Mariya V. Melnik, orcid.org/0000-0001-8800-4628

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 09 January 2024

Online vs in-person learning in higher education: effects on student achievement and recommendations for leadership

  • Bandar N. Alarifi 1 &
  • Steve Song 2  

Humanities and Social Sciences Communications volume  11 , Article number:  86 ( 2024 ) Cite this article

12k Accesses

3 Citations

3 Altmetric

Metrics details

  • Science, technology and society

This study is a comparative analysis of online distance learning and traditional in-person education at King Saud University in Saudi Arabia, with a focus on understanding how different educational modalities affect student achievement. The justification for this study lies in the rapid shift towards online learning, especially highlighted by the educational changes during the COVID-19 pandemic. By analyzing the final test scores of freshman students in five core courses over the 2020 (in-person) and 2021 (online) academic years, the research provides empirical insights into the efficacy of online versus traditional education. Initial observations suggested that students in online settings scored lower in most courses. However, after adjusting for variables like gender, class size, and admission scores using multiple linear regression, a more nuanced picture emerged. Three courses showed better performance in the 2021 online cohort, one favored the 2020 in-person group, and one was unaffected by the teaching format. The study emphasizes the crucial need for a nuanced, data-driven strategy in integrating online learning within higher education systems. It brings to light the fact that the success of educational methodologies is highly contingent on specific contextual factors. This finding advocates for educational administrators and policymakers to exercise careful and informed judgment when adopting online learning modalities. It encourages them to thoroughly evaluate how different subjects and instructional approaches might interact with online formats, considering the variable effects these might have on learning outcomes. This approach ensures that decisions about implementing online education are made with a comprehensive understanding of its diverse and context-specific impacts, aiming to optimize educational effectiveness and student success.

Similar content being viewed by others

research paper about online distance learning

Elementary school teachers’ perspectives about learning during the COVID-19 pandemic

research paper about online distance learning

Quality of a master’s degree in education in Ecuador

research paper about online distance learning

Co-designing inclusive excellence in higher education: Students’ and teachers’ perspectives on the ideal online learning environment using the I-TPACK model

Introduction.

The year 2020 marked an extraordinary period, characterized by the global disruption caused by the COVID-19 pandemic. Governments and institutions worldwide had to adapt to unforeseen challenges across various domains, including health, economy, and education. In response, many educational institutions quickly transitioned to distance teaching (also known as e-learning, online learning, or virtual classrooms) to ensure continued access to education for their students. However, despite this rapid and widespread shift to online learning, a comprehensive examination of its effects on student achievement in comparison to traditional in-person instruction remains largely unexplored.

In research examining student outcomes in the context of online learning, the prevailing trend is the consistent observation that online learners often achieve less favorable results when compared to their peers in traditional classroom settings (e.g., Fischer et al., 2020 ; Bettinger et al., 2017 ; Edvardsson and Oskarsson, 2008 ). However, it is important to note that a significant portion of research on online learning has primarily focused on its potential impact (Kuhfeld et al., 2020 ; Azevedo et al., 2020 ; Di Pietro et al., 2020 ) or explored various perspectives (Aucejo et al., 2020 ; Radha et al., 2020 ) concerning distance education. These studies have often omitted a comprehensive and nuanced examination of its concrete academic consequences, particularly in terms of test scores and grades.

Given the dearth of research on the academic impact of online learning, especially in light of Covid-19 in the educational arena, the present study aims to address that gap by assessing the effectiveness of distance learning compared to in-person teaching in five required freshmen-level courses at King Saud University, Saudi Arabia. To accomplish this objective, the current study compared the final exam results of 8297 freshman students who were enrolled in the five courses in person in 2020 to their 8425 first-year counterparts who has taken the same courses at the same institution in 2021 but in an online format.

The final test results of the five courses (i.e., University Skills 101, Entrepreneurship 101, Computer Skills 101, Computer Skills 101, and Fitness and Health Culture 101) were examined, accounting for potential confounding factors such as gender, class size and admission scores, which have been cited in past research to be correlated with student achievement (e.g., Meinck and Brese, 2019 ; Jepsen, 2015 ) Additionally, as the preparatory year at King Saud University is divided into five tracks—health, nursing, science, business, and humanity, the study classified students based on their respective disciplines.

Motivation for the study

The rapid expansion of distance learning in higher education, particularly highlighted during the recent COVID-19 pandemic (Volk et al., 2020 ; Bettinger et al., 2017 ), underscores the need for alternative educational approaches during crises. Such disruptions can catalyze innovation and the adoption of distance learning as a contingency plan (Christensen et al., 2015 ). King Saud University, like many institutions worldwide, faced the challenge of transitioning abruptly to online learning in response to the pandemic.

E-learning has gained prominence in higher education due to technological advancements, offering institutions a competitive edge (Valverde-Berrocoso et al., 2020 ). Especially during conditions like the COVID-19 pandemic, electronic communication was utilized across the globe as a feasible means to overcome barriers and enhance interactions (Bozkurt, 2019 ).

Distance learning, characterized by flexibility, became crucial when traditional in-person classes are hindered by unforeseen circumstance such as the ones posed by COVID-19 (Arkorful and Abaidoo, 2015 ). Scholars argue that it allows students to learn at their own pace, often referred to as self-directed learning (Hiemstra, 1994 ) or self-education (Gadamer, 2001 ). Additional advantages include accessibility, cost-effectiveness, and flexibility (Sadeghi, 2019 ).

However, distance learning is not immune to its own set of challenges. Technical impediments, encompassing network issues, device limitations, and communication hiccups, represent formidable hurdles (Sadeghi, 2019 ). Furthermore, concerns about potential distractions in the online learning environment, fueled by the ubiquity of the internet and social media, have surfaced (Hall et al., 2020 ; Ravizza et al., 2017 ). The absence of traditional face-to-face interactions among students and between students and instructors is also viewed as a potential drawback (Sadeghi, 2019 ).

Given the evolving understanding of the pros and cons of distance learning, this study aims to contribute to the existing literature by assessing the effectiveness of distance learning, specifically in terms of student achievement, as compared to in-person classroom learning at King Saud University, one of Saudi Arabia’s largest higher education institutions.

Academic achievement: in-person vs online learning

The primary driving force behind the rapid integration of technology in education has been its emphasis on student performance (Lai and Bower, 2019 ). Over the past decade, numerous studies have undertaken comparisons of student academic achievement in online and in-person settings (e.g., Bettinger et al., 2017 ; Fischer et al., 2020 ; Iglesias-Pradas et al., 2021 ). This section offers a concise review of the disparities in academic achievement between college students engaged in in-person and online learning, as identified in existing research.

A number of studies point to the superiority of traditional in-person education over online learning in terms of academic outcomes. For example, Fischer et al. ( 2020 ) conducted a comprehensive study involving 72,000 university students across 433 subjects, revealing that online students tend to achieve slightly lower academic results than their in-class counterparts. Similarly, Bettinger et al. ( 2017 ) found that students at for-profit online universities generally underperformed when compared to their in-person peers. Supporting this trend, Figlio et al. ( 2013 ) indicated that in-person instruction consistently produced better results, particularly among specific subgroups like males, lower-performing students, and Hispanic learners. Additionally, Kaupp’s ( 2012 ) research in California community colleges demonstrated that online students faced lower completion and success rates compared to their traditional in-person counterparts (Fig. 1 ).

figure 1

The figure compared student achievement in the final tests in the five courses by year, using independent-samples t-tests; the results show a statistically-significant drop in test scores from 2020 (in person) to 2021 (online) for all courses except CT_101.

In contrast, other studies present evidence of online students outperforming their in-person peers. For example, Iglesias-Pradas et al. ( 2021 ) conducted a comparative analysis of 43 bachelor courses at Telecommunication Engineering College in Malaysia, revealing that online students achieved higher academic outcomes than their in-person counterparts. Similarly, during the COVID-19 pandemic, Gonzalez et al. ( 2020 ) found that students engaged in online learning performed better than those who had previously taken the same subjects in traditional in-class settings.

Expanding on this topic, several studies have reported mixed results when comparing the academic performance of online and in-person students, with various student and instructor factors emerging as influential variables. Chesser et al. ( 2020 ) noted that student traits such as conscientiousness, agreeableness, and extraversion play a substantial role in academic achievement, regardless of the learning environment—be it traditional in-person classrooms or online settings. Furthermore, Cacault et al. ( 2021 ) discovered that online students with higher academic proficiency tend to outperform those with lower academic capabilities, suggesting that differences in students’ academic abilities may impact their performance. In contrast, Bergstrand and Savage ( 2013 ) found that online classes received lower overall ratings and exhibited a less respectful learning environment when compared to in-person instruction. Nevertheless, they also observed that the teaching efficiency of both in-class and online courses varied significantly depending on the instructors’ backgrounds and approaches. These findings underscore the multifaceted nature of the online vs. in-person learning debate, highlighting the need for a nuanced understanding of the factors at play.

Theoretical framework

Constructivism is a well-established learning theory that places learners at the forefront of their educational experience, emphasizing their active role in constructing knowledge through interactions with their environment (Duffy and Jonassen, 2009 ). According to constructivist principles, learners build their understanding by assimilating new information into their existing cognitive frameworks (Vygotsky, 1978 ). This theory highlights the importance of context, active engagement, and the social nature of learning (Dewey, 1938 ). Constructivist approaches often involve hands-on activities, problem-solving tasks, and opportunities for collaborative exploration (Brooks and Brooks, 1999 ).

In the realm of education, subject-specific pedagogy emerges as a vital perspective that acknowledges the distinctive nature of different academic disciplines (Shulman, 1986 ). It suggests that teaching methods should be tailored to the specific characteristics of each subject, recognizing that subjects like mathematics, literature, or science require different approaches to facilitate effective learning (Shulman, 1987 ). Subject-specific pedagogy emphasizes that the methods of instruction should mirror the ways experts in a particular field think, reason, and engage with their subject matter (Cochran-Smith and Zeichner, 2005 ).

When applying these principles to the design of instruction for online and in-person learning environments, the significance of adapting methods becomes even more pronounced. Online learning often requires unique approaches due to its reliance on technology, asynchronous interactions, and potential for reduced social presence (Anderson, 2003 ). In-person learning, on the other hand, benefits from face-to-face interactions and immediate feedback (Allen and Seaman, 2016 ). Here, the interplay of constructivism and subject-specific pedagogy becomes evident.

Online learning. In an online environment, constructivist principles can be upheld by creating interactive online activities that promote exploration, reflection, and collaborative learning (Salmon, 2000 ). Discussion forums, virtual labs, and multimedia presentations can provide opportunities for students to actively engage with the subject matter (Harasim, 2017 ). By integrating subject-specific pedagogy, educators can design online content that mirrors the discipline’s methodologies while leveraging technology for authentic experiences (Koehler and Mishra, 2009 ). For instance, an online history course might incorporate virtual museum tours, primary source analysis, and collaborative timeline projects.

In-person learning. In a traditional brick-and-mortar classroom setting, constructivist methods can be implemented through group activities, problem-solving tasks, and in-depth discussions that encourage active participation (Jonassen et al., 2003 ). Subject-specific pedagogy complements this by shaping instructional methods to align with the inherent characteristics of the subject (Hattie, 2009). For instance, in a physics class, hands-on experiments and real-world applications can bring theoretical concepts to life (Hake, 1998 ).

In sum, the fusion of constructivism and subject-specific pedagogy offers a versatile approach to instructional design that adapts to different learning environments (Garrison, 2011 ). By incorporating the principles of both theories, educators can tailor their methods to suit the unique demands of online and in-person learning, ultimately providing students with engaging and effective learning experiences that align with the nature of the subject matter and the mode of instruction.

Course description

The Self-Development Skills Department at King Saud University (KSU) offers five mandatory freshman-level courses. These courses aim to foster advanced thinking skills and cultivate scientific research abilities in students. They do so by imparting essential skills, identifying higher-level thinking patterns, and facilitating hands-on experience in scientific research. The design of these classes is centered around aiding students’ smooth transition into university life. Brief descriptions of these courses are as follows:

University Skills 101 (CI 101) is a three-hour credit course designed to nurture essential academic, communication, and personal skills among all preparatory year students at King Saud University. The primary goal of this course is to equip students with the practical abilities they need to excel in their academic pursuits and navigate their university lives effectively. CI 101 comprises 12 sessions and is an integral part of the curriculum for all incoming freshmen, ensuring a standardized foundation for skill development.

Fitness and Health 101 (FAJB 101) is a one-hour credit course. FAJB 101 focuses on the aspects of self-development skills in terms of health and physical, and the skills related to personal health, nutrition, sports, preventive, psychological, reproductive, and first aid. This course aims to motivate students’ learning process through entertainment, sports activities, and physical exercises to maintain their health. This course is required for all incoming freshmen students at King Saud University.

Entrepreneurship 101 (ENT 101) is a one-hour- credit course. ENT 101 aims to develop students’ skills related to entrepreneurship. The course provides students with knowledge and skills to generate and transform ideas and innovations into practical commercial projects in business settings. The entrepreneurship course consists of 14 sessions and is taught only to students in the business track.

Computer Skills 101 (CT 101) is a three-hour credit course. This provides students with the basic computer skills, e.g., components, operating systems, applications, and communication backup. The course explores data visualization, introductory level of modern programming with algorithms and information security. CT 101 course is taught for all tracks except those in the human track.

Computer Skills 102 (CT 102) is a three-hour credit course. It provides IT skills to the students to utilize computers with high efficiency, develop students’ research and scientific skills, and increase capability to design basic educational software. CT 102 course focuses on operating systems such as Microsoft Office. This course is only taught for students in the human track.

Structure and activities

These courses ranged from one to three hours. A one-hour credit means that students must take an hour of the class each week during the academic semester. The same arrangement would apply to two and three credit-hour courses. The types of activities in each course are shown in Table 1 .

At King Saud University, each semester spans 15 weeks in duration. The total number of semester hours allocated to each course serves as an indicator of its significance within the broader context of the academic program, including the diverse tracks available to students. Throughout the two years under study (i.e., 2020 and 2021), course placements (fall or spring), course content, and the organizational structure remained consistent and uniform.

Participants

The study’s data comes from test scores of a cohort of 16,722 first-year college students enrolled at King Saud University in Saudi Arabia over the span of two academic years: 2020 and 2021. Among these students, 8297 were engaged in traditional, in-person learning in 2020, while 8425 had transitioned to online instruction for the same courses in 2021 due to the Covid-19 pandemic. In 2020, the student population consisted of 51.5% females and 48.5% males. However, in 2021, there was a reversal in these proportions, with female students accounting for 48.5% and male students comprising 51.5% of the total participants.

Regarding student enrollment in the five courses, Table 2 provides a detailed breakdown by average class size, admission scores, and the number of students enrolled in the courses during the two years covered by this study. While the total number of students in each course remained relatively consistent across the two years, there were noticeable fluctuations in average class sizes. Specifically, four out of the five courses experienced substantial increases in class size, with some nearly doubling in size (e.g., ENT_101 and CT_102), while one course (CT_101) showed a reduction in its average class size.

In this study, it must be noted that while some students enrolled in up to three different courses within the same academic year, none repeated the same exam in both years. Specifically, students who failed to pass their courses in 2020 were required to complete them in summer sessions and were consequently not included in this study’s dataset. To ensure clarity and precision in our analysis, the research focused exclusively on student test scores to evaluate and compare the academic effectiveness of online and traditional in-person learning methods. This approach was chosen to provide a clear, direct comparison of the educational impacts associated with each teaching format.

Descriptive analysis of the final exam scores for the two years (2020 and 2021) were conducted. Additionally, comparison of student outcomes in in-person classes in 2020 to their online platform peers in 2021 were conducted using an independent-samples t -test. Subsequently, in order to address potential disparities between the two groups arising from variables such as gender, class size, and admission scores (which serve as an indicator of students’ academic aptitude and pre-enrollment knowledge), multiple regression analyses were conducted. In these multivariate analyses, outcomes of both in-person and online cohorts were assessed within their respective tracks. By carefully considering essential aforementioned variables linked to student performance, the study aimed to ensure a comprehensive and equitable evaluation.

Study instrument

The study obtained students’ final exam scores for the years 2020 (in-person) and 2021 (online) from the school’s records office through their examination management system. In the preparatory year at King Saud University, final exams for all courses are developed by committees composed of faculty members from each department. To ensure valid comparisons, the final exam questions, crafted by departmental committees of professors, remained consistent and uniform for the two years under examination.

Table 3 provides a comprehensive assessment of the reliability of all five tests included in our analysis. These tests exhibit a strong degree of internal consistency, with Cronbach’s alpha coefficients spanning a range from 0.77 to 0.86. This robust and consistent internal consistency measurement underscores the dependable nature of these tests, affirming their reliability and suitability for the study’s objectives.

In terms of assessing test validity, content validity was ensured through a thorough review by university subject matter experts, resulting in test items that align well with the content domain and learning objectives. Additionally, criterion-related validity was established by correlating students’ admissions test scores with their final required freshman test scores in the five subject areas, showing a moderate and acceptable relationship (0.37 to 0.56) between the test scores and the external admissions test. Finally, construct validity was confirmed through reviews by experienced subject instructors, leading to improvements in test content. With guidance from university subject experts, construct validity was established, affirming the effectiveness of the final tests in assessing students’ subject knowledge at the end of their coursework.

Collectively, these validity and reliability measures affirm the soundness and integrity of the final subject tests, establishing their suitability as effective assessment tools for evaluating students’ knowledge in their five mandatory freshman courses at King Saud University.

After obtaining research approval from the Research Committee at King Saud University, the coordinators of the five courses (CI_101, ENT_101, CT_101, CT_102, and FAJB_101) supplied the researchers with the final exam scores of all first-year preparatory year students at King Saud University for the initial semester of the academic years 2020 and 2021. The sample encompassed all students who had completed these five courses during both years, resulting in a total of 16,722 students forming the final group of participants.

Limitations

Several limitations warrant acknowledgment in this study. First, the research was conducted within a well-resourced major public university. As such, the experiences with online classes at other types of institutions (e.g., community colleges, private institutions) may vary significantly. Additionally, the limited data pertaining to in-class teaching practices and the diversity of learning activities across different courses represents a gap that could have provided valuable insights for a more thorough interpretation and explanation of the study’s findings.

To compare student achievement in the final tests in the five courses by year, independent-samples t -tests were conducted. Table 4 shows a statistically-significant drop in test scores from 2020 (in person) to 2021 (online) for all courses except CT_101. The biggest decline was with CT_102 with 3.58 points, and the smallest decline was with CI_101 with 0.18 points.

However, such simple comparison of means between the two years (via t -tests) by subjects does not account for the differences in gender composition, class size, and admission scores between the two academic years, all of which have been associated with student outcomes (e.g., Ho and Kelman, 2014 ; De Paola et al., 2013 ). To account for such potential confounding variables, multiple regressions were conducted to compare the 2 years’ results while controlling for these three factors associated with student achievement.

Table 5 presents the regression results, illustrating the variation in final exam scores between 2020 and 2021, while controlling for gender, class size, and admission scores. Importantly, these results diverge significantly from the outcomes obtained through independent-sample t -test analyses.

Taking into consideration the variables mentioned earlier, students in the 2021 online cohort demonstrated superior performance compared to their 2020 in-person counterparts in CI_101, FAJB_101, and CT_101, with score advantages of 0.89, 0.56, and 5.28 points, respectively. Conversely, in the case of ENT_101, online students in 2021 scored 0.69 points lower than their 2020 in-person counterparts. With CT_102, there were no statistically significant differences in final exam scores between the two cohorts of students.

The study sought to assess the effectiveness of distance learning compared to in-person learning in the higher education setting in Saudi Arabia. We analyzed the final exam scores of 16,722 first-year college students in King Saud University in five required subjects (i.e., CI_101, ENT_101, CT_101, CT_102, and FAJB_101). The study initially performed a simple comparison of mean scores by tracks by year (via t -tests) and then a number of multiple regression analyses which controlled for class size, gender composition, and admission scores.

Overall, the study’s more in-depth findings using multiple regression painted a wholly different picture than the results obtained using t -tests. After controlling for class size, gender composition, and admissions scores, online students in 2021 performed better than their in-person instruction peers in 2020 in University Skills (CI_101), Fitness and Health (FAJB_101), and Computer Skills (CT_101), whereas in-person students outperformed their online peers in Entrepreneurship (ENT_101). There was no meaningful difference in outcomes for students in the Computer Skills (CT_102) course for the two years.

In light of these findings, it raises the question: why do we observe minimal differences (less than a one-point gain or loss) in student outcomes in courses like University Skills, Fitness and Health, Entrepreneurship, and Advanced Computer Skills based on the mode of instruction? Is it possible that when subjects are primarily at a basic or introductory level, as is the case with these courses, the mode of instruction may have a limited impact as long as the concepts are effectively communicated in a manner familiar and accessible to students?

In today’s digital age, one could argue that students in more developed countries, such as Saudi Arabia, generally possess the skills and capabilities to effectively engage with materials presented in both in-person and online formats. However, there is a notable exception in the Basic Computer Skills course, where the online cohort outperformed their in-person counterparts by more than 5 points. Insights from interviews with the instructors of this course suggest that this result may be attributed to the course’s basic and conceptual nature, coupled with the availability of instructional videos that students could revisit at their own pace.

Given that students enter this course with varying levels of computer skills, self-paced learning may have allowed them to cover course materials at their preferred speed, concentrating on less familiar topics while swiftly progressing through concepts they already understood. The advantages of such self-paced learning have been documented by scholars like Tullis and Benjamin ( 2011 ), who found that self-paced learners often outperform those who spend the same amount of time studying identical materials. This approach allows learners to allocate their time more effectively according to their individual learning pace, providing greater ownership and control over their learning experience. As such, in courses like introductory computer skills, it can be argued that becoming familiar with fundamental and conceptual topics may not require extensive in-class collaboration. Instead, it may be more about exposure to and digestion of materials in a format and at a pace tailored to students with diverse backgrounds, knowledge levels, and skill sets.

Further investigation is needed to more fully understand why some classes benefitted from online instruction while others did not, and vice versa. Perhaps, it could be posited that some content areas are more conducive to in-person (or online) format while others are not. Or it could be that the different results of the two modes of learning were driven by students of varying academic abilities and engagement, with low-achieving students being more vulnerable to the limitations of online learning (e.g., Kofoed et al., 2021 ). Whatever the reasons, the results of the current study can be enlightened by a more in-depth analysis of the various factors associated with such different forms of learning. Moreover, although not clear cut, what the current study does provide is additional evidence against any dire consequences to student learning (at least in the higher ed setting) as a result of sudden increase in online learning with possible benefits of its wider use being showcased.

Based on the findings of this study, we recommend that educational leaders adopt a measured approach to online learning—a stance that neither fully embraces nor outright denounces it. The impact on students’ experiences and engagement appears to vary depending on the subjects and methods of instruction, sometimes hindering, other times promoting effective learning, while some classes remain relatively unaffected.

Rather than taking a one-size-fits-all approach, educational leaders should be open to exploring the nuances behind these outcomes. This involves examining why certain courses thrived with online delivery, while others either experienced a decline in student achievement or remained largely unaffected. By exploring these differentiated outcomes associated with diverse instructional formats, leaders in higher education institutions and beyond can make informed decisions about resource allocation. For instance, resources could be channeled towards in-person learning for courses that benefit from it, while simultaneously expanding online access for courses that have demonstrated improved outcomes through its virtual format. This strategic approach not only optimizes resource allocation but could also open up additional revenue streams for the institution.

Considering the enduring presence of online learning, both before the pandemic and its accelerated adoption due to Covid-19, there is an increasing need for institutions of learning and scholars in higher education, as well as other fields, to prioritize the study of its effects and optimal utilization. This study, which compares student outcomes between two cohorts exposed to in-person and online instruction (before and during Covid-19) at the largest university in Saudi Arabia, represents a meaningful step in this direction.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Allen IE, Seaman J (2016) Online report card: Tracking online education in the United States . Babson Survey Group

Anderson T (2003) Getting the mix right again: an updated and theoretical rationale for interaction. Int Rev Res Open Distrib Learn , 4 (2). https://doi.org/10.19173/irrodl.v4i2.149

Arkorful V, Abaidoo N (2015) The role of e-learning, advantages and disadvantages of its adoption in higher education. Int J Instruct Technol Distance Learn 12(1):29–42

Google Scholar  

Aucejo EM, French J, Araya MP, Zafar B (2020) The impact of COVID-19 on student experiences and expectations: Evidence from a survey. Journal of Public Economics 191:104271. https://doi.org/10.1016/j.jpubeco.2020.104271

Article   PubMed   PubMed Central   Google Scholar  

Azevedo JP, Hasan A, Goldemberg D, Iqbal SA, and Geven K (2020) Simulating the potential impacts of COVID-19 school closures on schooling and learning outcomes: a set of global estimates. World Bank Policy Research Working Paper

Bergstrand K, Savage SV (2013) The chalkboard versus the avatar: Comparing the effectiveness of online and in-class courses. Teach Sociol 41(3):294–306. https://doi.org/10.1177/0092055X13479949

Article   Google Scholar  

Bettinger EP, Fox L, Loeb S, Taylor ES (2017) Virtual classrooms: How online college courses affect student success. Am Econ Rev 107(9):2855–2875. https://doi.org/10.1257/aer.20151193

Bozkurt A (2019) From distance education to open and distance learning: a holistic evaluation of history, definitions, and theories. Handbook of research on learning in the age of transhumanism , 252–273. https://doi.org/10.4018/978-1-5225-8431-5.ch016

Brooks JG, Brooks MG (1999) In search of understanding: the case for constructivist classrooms . Association for Supervision and Curriculum Development

Cacault MP, Hildebrand C, Laurent-Lucchetti J, Pellizzari M (2021) Distance learning in higher education: evidence from a randomized experiment. J Eur Econ Assoc 19(4):2322–2372. https://doi.org/10.1093/jeea/jvaa060

Chesser S, Murrah W, Forbes SA (2020) Impact of personality on choice of instructional delivery and students’ performance. Am Distance Educ 34(3):211–223. https://doi.org/10.1080/08923647.2019.1705116

Christensen CM, Raynor M, McDonald R (2015) What is disruptive innovation? Harv Bus Rev 93(12):44–53

Cochran-Smith M, Zeichner KM (2005) Studying teacher education: the report of the AERA panel on research and teacher education. Choice Rev Online 43 (4). https://doi.org/10.5860/choice.43-2338

De Paola M, Ponzo M, Scoppa V (2013) Class size effects on student achievement: heterogeneity across abilities and fields. Educ Econ 21(2):135–153. https://doi.org/10.1080/09645292.2010.511811

Dewey, J (1938) Experience and education . Simon & Schuster

Di Pietro G, Biagi F, Costa P, Karpinski Z, Mazza J (2020) The likely impact of COVID-19 on education: reflections based on the existing literature and recent international datasets. Publications Office of the European Union, Luxembourg

Duffy TM, Jonassen DH (2009) Constructivism and the technology of instruction: a conversation . Routledge, Taylor & Francis Group

Edvardsson IR, Oskarsson GK (2008) Distance education and academic achievement in business administration: the case of the University of Akureyri. Int Rev Res Open Distrib Learn, 9 (3). https://doi.org/10.19173/irrodl.v9i3.542

Figlio D, Rush M, Yin L (2013) Is it live or is it internet? Experimental estimates of the effects of online instruction on student learning. J Labor Econ 31(4):763–784. https://doi.org/10.3386/w16089

Fischer C, Xu D, Rodriguez F, Denaro K, Warschauer M (2020) Effects of course modality in summer session: enrollment patterns and student performance in face-to-face and online classes. Internet Higher Educ 45:100710. https://doi.org/10.1016/j.iheduc.2019.100710

Gadamer HG (2001) Education is self‐education. J Philos Educ 35(4):529–538

Garrison DR (2011) E-learning in the 21st century: a framework for research and practice . Routledge. https://doi.org/10.4324/9780203838761

Gonzalez T, de la Rubia MA, Hincz KP, Comas-Lopez M, Subirats L, Fort S, & Sacha GM (2020) Influence of COVID-19 confinement on students’ performance in higher education. PLOS One 15 (10). https://doi.org/10.1371/journal.pone.0239490

Hake RR (1998) Interactive-engagement versus traditional methods: a six-thousand-student survey of mechanics test data for introductory physics courses. Am J Phys 66(1):64–74. https://doi.org/10.1119/1.18809

Article   ADS   Google Scholar  

Hall ACG, Lineweaver TT, Hogan EE, O’Brien SW (2020) On or off task: the negative influence of laptops on neighboring students’ learning depends on how they are used. Comput Educ 153:1–8. https://doi.org/10.1016/j.compedu.2020.103901

Harasim L (2017) Learning theory and online technologies. Routledge. https://doi.org/10.4324/9780203846933

Hiemstra R (1994) Self-directed learning. In WJ Rothwell & KJ Sensenig (Eds), The sourcebook for self-directed learning (pp 9–20). HRD Press

Ho DE, Kelman MG (2014) Does class size affect the gender gap? A natural experiment in law. J Legal Stud 43(2):291–321

Iglesias-Pradas S, Hernández-García Á, Chaparro-Peláez J, Prieto JL (2021) Emergency remote teaching and students’ academic performance in higher education during the COVID-19 pandemic: a case study. Comput Hum Behav 119:106713. https://doi.org/10.1016/j.chb.2021.106713

Jepsen C (2015) Class size: does it matter for student achievement? IZA World of Labor . https://doi.org/10.15185/izawol.190

Jonassen DH, Howland J, Moore J, & Marra RM (2003) Learning to solve problems with technology: a constructivist perspective (2nd ed). Columbus: Prentice Hall

Kaupp R (2012) Online penalty: the impact of online instruction on the Latino-White achievement gap. J Appli Res Community Coll 19(2):3–11. https://doi.org/10.46569/10211.3/99362

Koehler MJ, Mishra P (2009) What is technological pedagogical content knowledge? Contemp Issues Technol Teacher Educ 9(1):60–70

Kofoed M, Gebhart L, Gilmore D, & Moschitto R (2021) Zooming to class?: Experimental evidence on college students’ online learning during COVID-19. SSRN Electron J. https://doi.org/10.2139/ssrn.3846700

Kuhfeld M, Soland J, Tarasawa B, Johnson A, Ruzek E, Liu J (2020) Projecting the potential impact of COVID-19 school closures on academic achievement. Educ Res 49(8):549–565. https://doi.org/10.3102/0013189x20965918

Lai JW, Bower M (2019) How is the use of technology in education evaluated? A systematic review. Comput Educ 133:27–42

Meinck S, Brese F (2019) Trends in gender gaps: using 20 years of evidence from TIMSS. Large-Scale Assess Educ 7 (1). https://doi.org/10.1186/s40536-019-0076-3

Radha R, Mahalakshmi K, Kumar VS, Saravanakumar AR (2020) E-Learning during lockdown of COVID-19 pandemic: a global perspective. Int J Control Autom 13(4):1088–1099

Ravizza SM, Uitvlugt MG, Fenn KM (2017) Logged in and zoned out: How laptop Internet use relates to classroom learning. Psychol Sci 28(2):171–180. https://doi.org/10.1177/095679761667731

Article   PubMed   Google Scholar  

Sadeghi M (2019) A shift from classroom to distance learning: advantages and limitations. Int J Res Engl Educ 4(1):80–88

Salmon G (2000) E-moderating: the key to teaching and learning online . Routledge. https://doi.org/10.4324/9780203816684

Shulman LS (1986) Those who understand: knowledge growth in teaching. Edu Res 15(2):4–14

Shulman LS (1987) Knowledge and teaching: foundations of the new reform. Harv Educ Rev 57(1):1–22

Tullis JG, Benjamin AS (2011) On the effectiveness of self-paced learning. J Mem Lang 64(2):109–118. https://doi.org/10.1016/j.jml.2010.11.002

Valverde-Berrocoso J, Garrido-Arroyo MDC, Burgos-Videla C, Morales-Cevallos MB (2020) Trends in educational research about e-learning: a systematic literature review (2009–2018). Sustainability 12(12):5153

Volk F, Floyd CG, Shaler L, Ferguson L, Gavulic AM (2020) Active duty military learners and distance education: factors of persistence and attrition. Am J Distance Educ 34(3):1–15. https://doi.org/10.1080/08923647.2019.1708842

Vygotsky LS (1978) Mind in society: the development of higher psychological processes. Harvard University Press

Download references

Author information

Authors and affiliations.

Department of Sports and Recreation Management, King Saud University, Riyadh, Saudi Arabia

Bandar N. Alarifi

Division of Research and Doctoral Studies, Concordia University Chicago, 7400 Augusta Street, River Forest, IL, 60305, USA

You can also search for this author in PubMed   Google Scholar

Contributions

Dr. Bandar Alarifi collected and organized data for the five courses and wrote the manuscript. Dr. Steve Song analyzed and interpreted the data regarding student achievement and revised the manuscript. These authors jointly supervised this work and approved the final manuscript.

Corresponding author

Correspondence to Bandar N. Alarifi .

Ethics declarations

Competing interests.

The author declares no competing interests.

Ethical approval

This study was approved by the Research Ethics Committee at King Saud University on 25 March 2021 (No. 4/4/255639). This research does not involve the collection or analysis of data that could be used to identify participants (including email addresses or other contact details). All information is anonymized and the submission does not include images that may identify the person. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Alarifi, B.N., Song, S. Online vs in-person learning in higher education: effects on student achievement and recommendations for leadership. Humanit Soc Sci Commun 11 , 86 (2024). https://doi.org/10.1057/s41599-023-02590-1

Download citation

Received : 07 June 2023

Accepted : 21 December 2023

Published : 09 January 2024

DOI : https://doi.org/10.1057/s41599-023-02590-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper about online distance learning

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

A systematic review of research on online teaching and learning from 2009 to 2018

Associated data.

Systematic reviews were conducted in the nineties and early 2000's on online learning research. However, there is no review examining the broader aspect of research themes in online learning in the last decade. This systematic review addresses this gap by examining 619 research articles on online learning published in twelve journals in the last decade. These studies were examined for publication trends and patterns, research themes, research methods, and research settings and compared with the research themes from the previous decades. While there has been a slight decrease in the number of studies on online learning in 2015 and 2016, it has then continued to increase in 2017 and 2018. The majority of the studies were quantitative in nature and were examined in higher education. Online learning research was categorized into twelve themes and a framework across learner, course and instructor, and organizational levels was developed. Online learner characteristics and online engagement were examined in a high number of studies and were consistent with three of the prior systematic reviews. However, there is still a need for more research on organization level topics such as leadership, policy, and management and access, culture, equity, inclusion, and ethics and also on online instructor characteristics.

  • • Twelve online learning research themes were identified in 2009–2018.
  • • A framework with learner, course and instructor, and organizational levels was used.
  • • Online learner characteristics and engagement were the mostly examined themes.
  • • The majority of the studies used quantitative research methods and in higher education.
  • • There is a need for more research on organization level topics.

1. Introduction

Online learning has been on the increase in the last two decades. In the United States, though higher education enrollment has declined, online learning enrollment in public institutions has continued to increase ( Allen & Seaman, 2017 ), and so has the research on online learning. There have been review studies conducted on specific areas on online learning such as innovations in online learning strategies ( Davis et al., 2018 ), empirical MOOC literature ( Liyanagunawardena et al., 2013 ; Veletsianos & Shepherdson, 2016 ; Zhu et al., 2018 ), quality in online education ( Esfijani, 2018 ), accessibility in online higher education ( Lee, 2017 ), synchronous online learning ( Martin et al., 2017 ), K-12 preparation for online teaching ( Moore-Adams et al., 2016 ), polychronicity in online learning ( Capdeferro et al., 2014 ), meaningful learning research in elearning and online learning environments ( Tsai, Shen, & Chiang, 2013 ), problem-based learning in elearning and online learning environments ( Tsai & Chiang, 2013 ), asynchronous online discussions ( Thomas, 2013 ), self-regulated learning in online learning environments ( Tsai, Shen, & Fan, 2013 ), game-based learning in online learning environments ( Tsai & Fan, 2013 ), and online course dropout ( Lee & Choi, 2011 ). While there have been review studies conducted on specific online learning topics, very few studies have been conducted on the broader aspect of online learning examining research themes.

2. Systematic Reviews of Distance Education and Online Learning Research

Distance education has evolved from offline to online settings with the access to internet and COVID-19 has made online learning the common delivery method across the world. Tallent-Runnels et al. (2006) reviewed research late 1990's to early 2000's, Berge and Mrozowski (2001) reviewed research 1990 to 1999, and Zawacki-Richter et al. (2009) reviewed research in 2000–2008 on distance education and online learning. Table 1 shows the research themes from previous systematic reviews on online learning research. There are some themes that re-occur in the various reviews, and there are also new themes that emerge. Though there have been reviews conducted in the nineties and early 2000's, there is no review examining the broader aspect of research themes in online learning in the last decade. Hence, the need for this systematic review which informs the research themes in online learning from 2009 to 2018. In the following sections, we review these systematic review studies in detail.

Comparison of online learning research themes from previous studies.

1990–1999 ( )1993–2004 ( )2000–2008 (Zawacki-Richter et al.,
2009)
Most Number of Studies
Lowest Number of Studies

2.1. Distance education research themes, 1990 to 1999 ( Berge & Mrozowski, 2001 )

Berge and Mrozowski (2001) reviewed 890 research articles and dissertation abstracts on distance education from 1990 to 1999. The four distance education journals chosen by the authors to represent distance education included, American Journal of Distance Education, Distance Education, Open Learning, and the Journal of Distance Education. This review overlapped in the dates of the Tallent-Runnels et al. (2006) study. Berge and Mrozowski (2001) categorized the articles according to Sherry's (1996) ten themes of research issues in distance education: redefining roles of instructor and students, technologies used, issues of design, strategies to stimulate learning, learner characteristics and support, issues related to operating and policies and administration, access and equity, and costs and benefits.

In the Berge and Mrozowski (2001) study, more than 100 studies focused on each of the three themes: (1) design issues, (2) learner characteristics, and (3) strategies to increase interactivity and active learning. By design issues, the authors focused on instructional systems design and focused on topics such as content requirement, technical constraints, interactivity, and feedback. The next theme, strategies to increase interactivity and active learning, were closely related to design issues and focused on students’ modes of learning. Learner characteristics focused on accommodating various learning styles through customized instructional theory. Less than 50 studies focused on the three least examined themes: (1) cost-benefit tradeoffs, (2) equity and accessibility, and (3) learner support. Cost-benefit trade-offs focused on the implementation costs of distance education based on school characteristics. Equity and accessibility focused on the equity of access to distance education systems. Learner support included topics such as teacher to teacher support as well as teacher to student support.

2.2. Online learning research themes, 1993 to 2004 ( Tallent-Runnels et al., 2006 )

Tallent-Runnels et al. (2006) reviewed research on online instruction from 1993 to 2004. They reviewed 76 articles focused on online learning by searching five databases, ERIC, PsycINFO, ContentFirst, Education Abstracts, and WilsonSelect. Tallent-Runnels et al. (2006) categorized research into four themes, (1) course environment, (2) learners' outcomes, (3) learners’ characteristics, and (4) institutional and administrative factors. The first theme that the authors describe as course environment ( n  = 41, 53.9%) is an overarching theme that includes classroom culture, structural assistance, success factors, online interaction, and evaluation.

Tallent-Runnels et al. (2006) for their second theme found that studies focused on questions involving the process of teaching and learning and methods to explore cognitive and affective learner outcomes ( n  = 29, 38.2%). The authors stated that they found the research designs flawed and lacked rigor. However, the literature comparing traditional and online classrooms found both delivery systems to be adequate. Another research theme focused on learners’ characteristics ( n  = 12, 15.8%) and the synergy of learners, design of the online course, and system of delivery. Research findings revealed that online learners were mainly non-traditional, Caucasian, had different learning styles, and were highly motivated to learn. The final theme that they reported was institutional and administrative factors (n  = 13, 17.1%) on online learning. Their findings revealed that there was a lack of scholarly research in this area and most institutions did not have formal policies in place for course development as well as faculty and student support in training and evaluation. Their research confirmed that when universities offered online courses, it improved student enrollment numbers.

2.3. Distance education research themes 2000 to 2008 ( Zawacki-Richter et al., 2009 )

Zawacki-Richter et al. (2009) reviewed 695 articles on distance education from 2000 to 2008 using the Delphi method for consensus in identifying areas and classified the literature from five prominent journals. The five journals selected due to their wide scope in research in distance education included Open Learning, Distance Education, American Journal of Distance Education, the Journal of Distance Education, and the International Review of Research in Open and Distributed Learning. The reviewers examined the main focus of research and identified gaps in distance education research in this review.

Zawacki-Richter et al. (2009) classified the studies into macro, meso and micro levels focusing on 15 areas of research. The five areas of the macro-level addressed: (1) access, equity and ethics to deliver distance education for developing nations and the role of various technologies to narrow the digital divide, (2) teaching and learning drivers, markets, and professional development in the global context, (3) distance delivery systems and institutional partnerships and programs and impact of hybrid modes of delivery, (4) theoretical frameworks and models for instruction, knowledge building, and learner interactions in distance education practice, and (5) the types of preferred research methodologies. The meso-level focused on seven areas that involve: (1) management and organization for sustaining distance education programs, (2) examining financial aspects of developing and implementing online programs, (3) the challenges and benefits of new technologies for teaching and learning, (4) incentives to innovate, (5) professional development and support for faculty, (6) learner support services, and (7) issues involving quality standards and the impact on student enrollment and retention. The micro-level focused on three areas: (1) instructional design and pedagogical approaches, (2) culturally appropriate materials, interaction, communication, and collaboration among a community of learners, and (3) focus on characteristics of adult learners, socio-economic backgrounds, learning preferences, and dispositions.

The top three research themes in this review by Zawacki-Richter et al. (2009) were interaction and communities of learning ( n  = 122, 17.6%), instructional design ( n  = 121, 17.4%) and learner characteristics ( n  = 113, 16.3%). The lowest number of studies (less than 3%) were found in studies examining the following research themes, management and organization ( n  = 18), research methods in DE and knowledge transfer ( n  = 13), globalization of education and cross-cultural aspects ( n  = 13), innovation and change ( n  = 13), and costs and benefits ( n  = 12).

2.4. Online learning research themes

These three systematic reviews provide a broad understanding of distance education and online learning research themes from 1990 to 2008. However, there is an increase in the number of research studies on online learning in this decade and there is a need to identify recent research themes examined. Based on the previous systematic reviews ( Berge & Mrozowski, 2001 ; Hung, 2012 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ), online learning research in this study is grouped into twelve different research themes which include Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes. Table 2 below describes each of the research themes and using these themes, a framework is derived in Fig. 1 .

Research themes in online learning.

Research ThemeDescription
1Learner CharacteristicsFocuses on understanding the learner characteristics and how online learning can be designed and delivered to meet their needs. Online learner characteristics can be broadly categorized into demographic characteristics, academic characteristics, cognitive characteristics, affective, self-regulation, and motivational characteristics.
2Learner OutcomesLearner outcomes are statements that specify what the learner will achieve at the end of the course or program. Examining learner outcomes such as success, retention, and dropouts are critical in online courses.
3EngagementEngaging the learner in the online course is vitally important as they are separated from the instructor and peers in the online setting. Engagement is examined through the lens of interaction, participation, community, collaboration, communication, involvement and presence.
4Course or Program Design and DevelopmentCourse design and development is critical in online learning as it engages and assists the students in achieving the learner outcomes. Several models and processes are used to develop the online course, employing different design elements to meet student needs.
5Course FacilitationThe delivery or facilitation of the course is as important as course design. Facilitation strategies used in delivery of the course such as in communication and modeling practices are examined in course facilitation.
6Course AssessmentCourse Assessments are adapted and delivered in an online setting. Formative assessments, peer assessments, differentiated assessments, learner choice in assessments, feedback system, online proctoring, plagiarism in online learning, and alternate assessments such as eportfolios are examined.
7Evaluation and Quality AssuranceEvaluation is making a judgment either on the process, the product or a program either during or at the end. There is a need for research on evaluation and quality in the online courses. This has been examined through course evaluations, surveys, analytics, social networks, and pedagogical assessments. Quality assessment rubrics such as Quality Matters have also been researched.
8Course TechnologiesA number of online course technologies such as learning management systems, online textbooks, online audio and video tools, collaborative tools, social networks to build online community have been the focus of research.
9Instructor CharacteristicsWith the increase in online courses, there has also been an increase in the number of instructors teaching online courses. Instructor characteristics can be examined through their experience, satisfaction, and roles in online teaching.
10Institutional SupportThe support for online learning is examined both as learner support and instructor support. Online students need support to be successful online learners and this could include social, academic, and cognitive forms of support. Online instructors need support in terms of pedagogy and technology to be successful online instructors.
11Access, Culture, Equity, Inclusion, and EthicsCross-cultural online learning is gaining importance along with access in global settings. In addition, providing inclusive opportunities for all learners and in ethical ways is being examined.
12Leadership, Policy and ManagementLeadership support is essential for success of online learning. Leaders perspectives, challenges and strategies used are examined. Policies and governance related research are also being studied.

Fig. 1

Online learning research themes framework.

The collection of research themes is presented as a framework in Fig. 1 . The themes are organized by domain or level to underscore the nested relationship that exists. As evidenced by the assortment of themes, research can focus on any domain of delivery or associated context. The “Learner” domain captures characteristics and outcomes related to learners and their interaction within the courses. The “Course and Instructor” domain captures elements about the broader design of the course and facilitation by the instructor, and the “Organizational” domain acknowledges the contextual influences on the course. It is important to note as well that due to the nesting, research themes can cross domains. For example, the broader cultural context may be studied as it pertains to course design and development, and institutional support can include both learner support and instructor support. Likewise, engagement research can involve instructors as well as learners.

In this introduction section, we have reviewed three systematic reviews on online learning research ( Berge & Mrozowski, 2001 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ). Based on these reviews and other research, we have derived twelve themes to develop an online learning research framework which is nested in three levels: learner, course and instructor, and organization.

2.5. Purpose of this research

In two out of the three previous reviews, design, learner characteristics and interaction were examined in the highest number of studies. On the other hand, cost-benefit tradeoffs, equity and accessibility, institutional and administrative factors, and globalization and cross-cultural aspects were examined in the least number of studies. One explanation for this may be that it is a function of nesting, noting that studies falling in the Organizational and Course levels may encompass several courses or many more participants within courses. However, while some research themes re-occur, there are also variations in some themes across time, suggesting the importance of research themes rise and fall over time. Thus, a critical examination of the trends in themes is helpful for understanding where research is needed most. Also, since there is no recent study examining online learning research themes in the last decade, this study strives to address that gap by focusing on recent research themes found in the literature, and also reviewing research methods and settings. Notably, one goal is to also compare findings from this decade to the previous review studies. Overall, the purpose of this study is to examine publication trends in online learning research taking place during the last ten years and compare it with the previous themes identified in other review studies. Due to the continued growth of online learning research into new contexts and among new researchers, we also examine the research methods and settings found in the studies of this review.

The following research questions are addressed in this study.

  • 1. What percentage of the population of articles published in the journals reviewed from 2009 to 2018 were related to online learning and empirical?
  • 2. What is the frequency of online learning research themes in the empirical online learning articles of journals reviewed from 2009 to 2018?
  • 3. What is the frequency of research methods and settings that researchers employed in the empirical online learning articles of the journals reviewed from 2009 to 2018?

This five-step systematic review process described in the U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse Procedures and Standards Handbook, Version 4.0 ( 2017 ) was used in this systematic review: (a) developing the review protocol, (b) identifying relevant literature, (c) screening studies, (d) reviewing articles, and (e) reporting findings.

3.1. Data sources and search strategies

The Education Research Complete database was searched using the keywords below for published articles between the years 2009 and 2018 using both the Title and Keyword function for the following search terms.

“online learning" OR "online teaching" OR "online program" OR "online course" OR “online education”

3.2. Inclusion/exclusion criteria

The initial search of online learning research among journals in the database resulted in more than 3000 possible articles. Therefore, we limited our search to select journals that focus on publishing peer-reviewed online learning and educational research. Our aim was to capture the journals that published the most articles in online learning. However, we also wanted to incorporate the concept of rigor, so we used expert perception to identify 12 peer-reviewed journals that publish high-quality online learning research. Dissertations and conference proceedings were excluded. To be included in this systematic review, each study had to meet the screening criteria as described in Table 3 . A research study was excluded if it did not meet all of the criteria to be included.

Inclusion/Exclusion criteria.

CriteriaInclusionExclusion
Focus of the articleOnline learningArticles that did not focus on online learning
Journals PublishedTwelve identified journalsJournals outside of the 12 journals
Publication date2009 to 2018Prior to 2009 and after 2018
Publication typeScholarly articles of original research from peer reviewed journalsBook chapters, technical reports, dissertations, or proceedings
Research Method and ResultsThere was an identifiable method and results section describing how the study was conducted and included the findings. Quantitative and qualitative methods were included.Reviews of other articles, opinion, or discussion papers that do not include a discussion of the procedures of the study or analysis of data such as product reviews or conceptual articles.
LanguageJournal article was written in EnglishOther languages were not included

3.3. Process flow selection of articles

Fig. 2 shows the process flow involved in the selection of articles. The search in the database Education Research Complete yielded an initial sample of 3332 articles. Targeting the 12 journals removed 2579 articles. After reviewing the abstracts, we removed 134 articles based on the inclusion/exclusion criteria. The final sample, consisting of 619 articles, was entered into the computer software MAXQDA ( VERBI Software, 2019 ) for coding.

Fig. 2

Flowchart of online learning research selection.

3.4. Developing review protocol

A review protocol was designed as a codebook in MAXQDA ( VERBI Software, 2019 ) by the three researchers. The codebook was developed based on findings from the previous review studies and from the initial screening of the articles in this review. The codebook included 12 research themes listed earlier in Table 2 (Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes), four research settings (higher education, continuing education, K-12, corporate/military), and three research designs (quantitative, qualitative and mixed methods). Fig. 3 below is a screenshot of MAXQDA used for the coding process.

Fig. 3

Codebook from MAXQDA.

3.5. Data coding

Research articles were coded by two researchers in MAXQDA. Two researchers independently coded 10% of the articles and then discussed and updated the coding framework. The second author who was a doctoral student coded the remaining studies. The researchers met bi-weekly to address coding questions that emerged. After the first phase of coding, we found that more than 100 studies fell into each of the categories of Learner Characteristics or Engagement, so we decided to pursue a second phase of coding and reexamine the two themes. Learner Characteristics were classified into the subthemes of Academic, Affective, Motivational, Self-regulation, Cognitive, and Demographic Characteristics. Engagement was classified into the subthemes of Collaborating, Communication, Community, Involvement, Interaction, Participation, and Presence.

3.6. Data analysis

Frequency tables were generated for each of the variables so that outliers could be examined and narrative data could be collapsed into categories. Once cleaned and collapsed into a reasonable number of categories, descriptive statistics were used to describe each of the coded elements. We first present the frequencies of publications related to online learning in the 12 journals. The total number of articles for each journal (collectively, the population) was hand-counted from journal websites, excluding editorials and book reviews. The publication trend of online learning research was also depicted from 2009 to 2018. Then, the descriptive information of the 12 themes, including the subthemes of Learner Characteristics and Engagement were provided. Finally, research themes by research settings and methodology were elaborated.

4.1. Publication trends on online learning

Publication patterns of the 619 articles reviewed from the 12 journals are presented in Table 4 . International Review of Research in Open and Distributed Learning had the highest number of publications in this review. Overall, about 8% of the articles appearing in these twelve journals consisted of online learning publications; however, several journals had concentrations of online learning articles totaling more than 20%.

Empirical online learning research articles by journal, 2009–2018.

Journal NameFrequency of Empirical Online Learning ResearchPercent of SamplePercent of Journal's Total Articles
International Review of Research in Open and Distributed Learning15224.4022.55
Internet & Higher Education8413.4826.58
Computers & Education7512.0418.84
Online Learning7211.563.25
Distance Education6410.2725.10
Journal of Online Learning & Teaching396.2611.71
Journal of Educational Technology & Society365.783.63
Quarterly Review of Distance Education243.854.71
American Journal of Distance Education213.379.17
British Journal of Educational Technology193.051.93
Educational Technology Research & Development193.0510.80
Australasian Journal of Educational Technology142.252.31
Total619100.08.06

Note . Journal's Total Article count excludes reviews and editorials.

The publication trend of online learning research is depicted in Fig. 4 . When disaggregated by year, the total frequency of publications shows an increasing trend. Online learning articles increased throughout the decade and hit a relative maximum in 2014. The greatest number of online learning articles ( n  = 86) occurred most recently, in 2018.

Fig. 4

Online learning publication trends by year.

4.2. Online learning research themes that appeared in the selected articles

The publications were categorized into the twelve research themes identified in Fig. 1 . The frequency counts and percentages of the research themes are provided in Table 5 below. A majority of the research is categorized into the Learner domain. The fewest number of articles appears in the Organization domain.

Research themes in the online learning publications from 2009 to 2018.

Research ThemesFrequencyPercentage
Engagement17928.92
Learner Characteristics13421.65
Learner Outcome325.17
Evaluation and Quality Assurance386.14
Course Technologies355.65
Course Facilitation345.49
Course Assessment304.85
Course Design and Development274.36
Instructor Characteristics213.39
Institutional Support335.33
Access, Culture, Equity, Inclusion, and Ethics294.68
Leadership, Policy, and Management274.36

The specific themes of Engagement ( n  = 179, 28.92%) and Learner Characteristics ( n  = 134, 21.65%) were most often examined in publications. These two themes were further coded to identify sub-themes, which are described in the next two sections. Publications focusing on Instructor Characteristics ( n  = 21, 3.39%) were least common in the dataset.

4.2.1. Research on engagement

The largest number of studies was on engagement in online learning, which in the online learning literature is referred to and examined through different terms. Hence, we explore this category in more detail. In this review, we categorized the articles into seven different sub-themes as examined through different lenses including presence, interaction, community, participation, collaboration, involvement, and communication. We use the term “involvement” as one of the terms since researchers sometimes broadly used the term engagement to describe their work without further description. Table 6 below provides the description, frequency, and percentages of the various studies related to engagement.

Research sub-themes on engagement.

DescriptionFrequencyPercentage
PresenceLearning experience through social, cognitive, and teaching presence.508.08
InteractionProcess of interacting with peers, instructor, or content that results in learners understanding or behavior436.95
CommunitySense of belonging within a group254.04
ParticipationProcess of being actively involved213.39
CollaborationWorking with someone to create something172.75
InvolvementInvolvement in learning. This includes articles that focused broadly on engagement of learners.142.26
CommunicationProcess of exchanging information with the intent to share information91.45

In the sections below, we provide several examples of the different engagement sub-themes that were studied within the larger engagement theme.

Presence. This sub-theme was the most researched in engagement. With the development of the community of inquiry framework most of the studies in this subtheme examined social presence ( Akcaoglu & Lee, 2016 ; Phirangee & Malec, 2017 ; Wei et al., 2012 ), teaching presence ( Orcutt & Dringus, 2017 ; Preisman, 2014 ; Wisneski et al., 2015 ) and cognitive presence ( Archibald, 2010 ; Olesova et al., 2016 ).

Interaction . This was the second most studied theme under engagement. Researchers examined increasing interpersonal interactions ( Cung et al., 2018 ), learner-learner interactions ( Phirangee, 2016 ; Shackelford & Maxwell, 2012 ; Tawfik et al., 2018 ), peer-peer interaction ( Comer et al., 2014 ), learner-instructor interaction ( Kuo et al., 2014 ), learner-content interaction ( Zimmerman, 2012 ), interaction through peer mentoring ( Ruane & Koku, 2014 ), interaction and community building ( Thormann & Fidalgo, 2014 ), and interaction in discussions ( Ruane & Lee, 2016 ; Tibi, 2018 ).

Community. Researchers examined building community in online courses ( Berry, 2017 ), supporting a sense of community ( Jiang, 2017 ), building an online learning community of practice ( Cho, 2016 ), building an academic community ( Glazer & Wanstreet, 2011 ; Nye, 2015 ; Overbaugh & Nickel, 2011 ), and examining connectedness and rapport in an online community ( Bolliger & Inan, 2012 ; Murphy & Rodríguez-Manzanares, 2012 ; Slagter van Tryon & Bishop, 2012 ).

Participation. Researchers examined engagement through participation in a number of studies. Some of the topics include, participation patterns in online discussion ( Marbouti & Wise, 2016 ; Wise et al., 2012 ), participation in MOOCs ( Ahn et al., 2013 ; Saadatmand & Kumpulainen, 2014 ), features that influence students’ online participation ( Rye & Støkken, 2012 ) and active participation.

Collaboration. Researchers examined engagement through collaborative learning. Specific studies focused on cross-cultural collaboration ( Kumi-Yeboah, 2018 ; Yang et al., 2014 ), how virtual teams collaborate ( Verstegen et al., 2018 ), types of collaboration teams ( Wicks et al., 2015 ), tools for collaboration ( Boling et al., 2014 ), and support for collaboration ( Kopp et al., 2012 ).

Involvement. Researchers examined engaging learners through involvement in various learning activities ( Cundell & Sheepy, 2018 ), student engagement through various measures ( Dixson, 2015 ), how instructors included engagement to involve students in learning ( O'Shea et al., 2015 ), different strategies to engage the learner ( Amador & Mederer, 2013 ), and designed emotionally engaging online environments ( Koseoglu & Doering, 2011 ).

Communication. Researchers examined communication in online learning in studies using social network analysis ( Ergün & Usluel, 2016 ), using informal communication tools such as Facebook for class discussion ( Kent, 2013 ), and using various modes of communication ( Cunningham et al., 2010 ; Rowe, 2016 ). Studies have also focused on both asynchronous and synchronous aspects of communication ( Swaggerty & Broemmel, 2017 ; Yamagata-Lynch, 2014 ).

4.2.2. Research on learner characteristics

The second largest theme was learner characteristics. In this review, we explore this further to identify several aspects of learner characteristics. In this review, we categorized the learner characteristics into self-regulation characteristics, motivational characteristics, academic characteristics, affective characteristics, cognitive characteristics, and demographic characteristics. Table 7 provides the number of studies and percentages examining the various learner characteristics.

Research sub-themes on learner characteristics.

Learner CharacteristicsDescriptionFrequencyPercentage
Self-regulation CharacteristicsInvolves controlling learner's behavior, emotions, and thoughts to achieve specific learning and performance goals548.72
Motivational CharacteristicsLearners goal-directed activity instigated and sustained such as beliefs, and behavioral change233.72
Academic CharacteristicsEducation characteristics such as educational type and educational level193.07
Affective CharacteristicsLearner characteristics that describe learners' feelings or emotions such as satisfaction172.75
Cognitive CharacteristicsLearner characteristics related to cognitive elements such as attention, memory, and intellect (e.g., learning strategies, learning skills, etc.)142.26
Demographic CharacteristicsLearner characteristics that relate to information as age, gender, language, social economic status, and cultural background.71.13

Online learning has elements that are different from the traditional face-to-face classroom and so the characteristics of the online learners are also different. Yukselturk and Top (2013) categorized online learner profile into ten aspects: gender, age, work status, self-efficacy, online readiness, self-regulation, participation in discussion list, participation in chat sessions, satisfaction, and achievement. Their categorization shows that there are differences in online learner characteristics in these aspects when compared to learners in other settings. Some of the other aspects such as participation and achievement as discussed by Yukselturk and Top (2013) are discussed in different research themes in this study. The sections below provide examples of the learner characteristics sub-themes that were studied.

Self-regulation. Several researchers have examined self-regulation in online learning. They found that successful online learners are academically motivated ( Artino & Stephens, 2009 ), have academic self-efficacy ( Cho & Shen, 2013 ), have grit and intention to succeed ( Wang & Baker, 2018 ), have time management and elaboration strategies ( Broadbent, 2017 ), set goals and revisit course content ( Kizilcec et al., 2017 ), and persist ( Glazer & Murphy, 2015 ). Researchers found a positive relationship between learner's self-regulation and interaction ( Delen et al., 2014 ) and self-regulation and communication and collaboration ( Barnard et al., 2009 ).

Motivation. Researchers focused on motivation of online learners including different motivation levels of online learners ( Li & Tsai, 2017 ), what motivated online learners ( Chaiprasurt & Esichaikul, 2013 ), differences in motivation of online learners ( Hartnett et al., 2011 ), and motivation when compared to face to face learners ( Paechter & Maier, 2010 ). Harnett et al. (2011) found that online learner motivation was complex, multifaceted, and sensitive to situational conditions.

Academic. Several researchers have focused on academic aspects for online learner characteristics. Readiness for online learning has been examined as an academic factor by several researchers ( Buzdar et al., 2016 ; Dray et al., 2011 ; Wladis & Samuels, 2016 ; Yu, 2018 ) specifically focusing on creating and validating measures to examine online learner readiness including examining students emotional intelligence as a measure of student readiness for online learning. Researchers have also examined other academic factors such as academic standing ( Bradford & Wyatt, 2010 ), course level factors ( Wladis et al., 2014 ) and academic skills in online courses ( Shea & Bidjerano, 2014 ).

Affective. Anderson and Bourke (2013) describe affective characteristics through which learners express feelings or emotions. Several research studies focused on the affective characteristics of online learners. Learner satisfaction for online learning has been examined by several researchers ( Cole et al., 2014 ; Dziuban et al., 2015 ; Kuo et al., 2013 ; Lee, 2014a ) along with examining student emotions towards online assessment ( Kim et al., 2014 ).

Cognitive. Researchers have also examined cognitive aspects of learner characteristics including meta-cognitive skills, cognitive variables, higher-order thinking, cognitive density, and critical thinking ( Chen & Wu, 2012 ; Lee, 2014b ). Lee (2014b) examined the relationship between cognitive presence density and higher-order thinking skills. Chen and Wu (2012) examined the relationship between cognitive and motivational variables in an online system for secondary physical education.

Demographic. Researchers have examined various demographic factors in online learning. Several researchers have examined gender differences in online learning ( Bayeck et al., 2018 ; Lowes et al., 2016 ; Yukselturk & Bulut, 2009 ), ethnicity, age ( Ke & Kwak, 2013 ), and minority status ( Yeboah & Smith, 2016 ) of online learners.

4.2.3. Less frequently studied research themes

While engagement and learner characteristics were studied the most, other themes were less often studied in the literature and are presented here, according to size, with general descriptions of the types of research examined for each.

Evaluation and Quality Assurance. There were 38 studies (6.14%) published in the theme of evaluation and quality assurance. Some of the studies in this theme focused on course quality standards, using quality matters to evaluate quality, using the CIPP model for evaluation, online learning system evaluation, and course and program evaluations.

Course Technologies. There were 35 studies (5.65%) published in the course technologies theme. Some of the studies examined specific technologies such as Edmodo, YouTube, Web 2.0 tools, wikis, Twitter, WebCT, Screencasts, and Web conferencing systems in the online learning context.

Course Facilitation. There were 34 studies (5.49%) published in the course facilitation theme. Some of the studies in this theme examined facilitation strategies and methods, experiences of online facilitators, and online teaching methods.

Institutional Support. There were 33 studies (5.33%) published in the institutional support theme which included support for both the instructor and learner. Some of the studies on instructor support focused on training new online instructors, mentoring programs for faculty, professional development resources for faculty, online adjunct faculty training, and institutional support for online instructors. Studies on learner support focused on learning resources for online students, cognitive and social support for online learners, and help systems for online learner support.

Learner Outcome. There were 32 studies (5.17%) published in the learner outcome theme. Some of the studies that were examined in this theme focused on online learner enrollment, completion, learner dropout, retention, and learner success.

Course Assessment. There were 30 studies (4.85%) published in the course assessment theme. Some of the studies in the course assessment theme examined online exams, peer assessment and peer feedback, proctoring in online exams, and alternative assessments such as eportfolio.

Access, Culture, Equity, Inclusion, and Ethics. There were 29 studies (4.68%) published in the access, culture, equity, inclusion, and ethics theme. Some of the studies in this theme examined online learning across cultures, multi-cultural effectiveness, multi-access, and cultural diversity in online learning.

Leadership, Policy, and Management. There were 27 studies (4.36%) published in the leadership, policy, and management theme. Some of the studies on leadership, policy, and management focused on online learning leaders, stakeholders, strategies for online learning leadership, resource requirements, university policies for online course policies, governance, course ownership, and faculty incentives for online teaching.

Course Design and Development. There were 27 studies (4.36%) published in the course design and development theme. Some of the studies examined in this theme focused on design elements, design issues, design process, design competencies, design considerations, and instructional design in online courses.

Instructor Characteristics. There were 21 studies (3.39%) published in the instructor characteristics theme. Some of the studies in this theme were on motivation and experiences of online instructors, ability to perform online teaching duties, roles of online instructors, and adjunct versus full-time online instructors.

4.3. Research settings and methodology used in the studies

The research methods used in the studies were classified into quantitative, qualitative, and mixed methods ( Harwell, 2012 , pp. 147–163). The research setting was categorized into higher education, continuing education, K-12, and corporate/military. As shown in Table A in the appendix, the vast majority of the publications used higher education as the research setting ( n  = 509, 67.6%). Table B in the appendix shows that approximately half of the studies adopted the quantitative method ( n  = 324, 43.03%), followed by the qualitative method ( n  = 200, 26.56%). Mixed methods account for the smallest portion ( n  = 95, 12.62%).

Table A shows that the patterns of the four research settings were approximately consistent across the 12 themes except for the theme of Leaner Outcome and Institutional Support. Continuing education had a higher relative frequency in Learner Outcome (0.28) and K-12 had a higher relative frequency in Institutional Support (0.33) compared to the frequencies they had in the total themes (0.09 and 0.08 respectively). Table B in the appendix shows that the distribution of the three methods were not consistent across the 12 themes. While quantitative studies and qualitative studies were roughly evenly distributed in Engagement, they had a large discrepancy in Learner Characteristics. There were 100 quantitative studies; however, only 18 qualitative studies published in the theme of Learner Characteristics.

In summary, around 8% of the articles published in the 12 journals focus on online learning. Online learning publications showed a tendency of increase on the whole in the past decade, albeit fluctuated, with the greatest number occurring in 2018. Among the 12 research themes related to online learning, the themes of Engagement and Learner Characteristics were studied the most and the theme of Instructor Characteristics was studied the least. Most studies were conducted in the higher education setting and approximately half of the studies used the quantitative method. Looking at the 12 themes by setting and method, we found that the patterns of the themes by setting or by method were not consistent across the 12 themes.

The quality of our findings was ensured by scientific and thorough searches and coding consistency. The selection of the 12 journals provides evidence of the representativeness and quality of primary studies. In the coding process, any difficulties and questions were resolved by consultations with the research team at bi-weekly meetings, which ensures the intra-rater and interrater reliability of coding. All these approaches guarantee the transparency and replicability of the process and the quality of our results.

5. Discussion

This review enabled us to identify the online learning research themes examined from 2009 to 2018. In the section below, we review the most studied research themes, engagement and learner characteristics along with implications, limitations, and directions for future research.

5.1. Most studied research themes

Three out of the four systematic reviews informing the design of the present study found that online learner characteristics and online engagement were examined in a high number of studies. In this review, about half of the studies reviewed (50.57%) focused on online learner characteristics or online engagement. This shows the continued importance of these two themes. In the Tallent-Runnels et al.’s (2006) study, the learner characteristics theme was identified as least studied for which they state that researchers are beginning to investigate learner characteristics in the early days of online learning.

One of the differences found in this review is that course design and development was examined in the least number of studies in this review compared to two prior systematic reviews ( Berge & Mrozowski, 2001 ; Zawacki-Richter et al., 2009 ). Zawacki-Richter et al. did not use a keyword search but reviewed all the articles in five different distance education journals. Berge and Mrozowski (2001) included a research theme called design issues to include all aspects of instructional systems design in distance education journals. In our study, in addition to course design and development, we also had focused themes on learner outcomes, course facilitation, course assessment and course evaluation. These are all instructional design focused topics and since we had multiple themes focusing on instructional design topics, the course design and development category might have resulted in fewer studies. There is still a need for more studies to focus on online course design and development.

5.2. Least frequently studied research themes

Three out of the four systematic reviews discussed in the opening of this study found management and organization factors to be least studied. In this review, Leadership, Policy, and Management was studied among 4.36% of the studies and Access, Culture, Equity, Inclusion, and Ethics was studied among 4.68% of the studies in the organizational level. The theme on Equity and accessibility was also found to be the least studied theme in the Berge and Mrozowski (2001) study. In addition, instructor characteristics was the least examined research theme among the twelve themes studied in this review. Only 3.39% of the studies were on instructor characteristics. While there were some studies examining instructor motivation and experiences, instructor ability to teach online, online instructor roles, and adjunct versus full-time online instructors, there is still a need to examine topics focused on instructors and online teaching. This theme was not included in the prior reviews as the focus was more on the learner and the course but not on the instructor. While it is helpful to see research evolving on instructor focused topics, there is still a need for more research on the online instructor.

5.3. Comparing research themes from current study to previous studies

The research themes from this review were compared with research themes from previous systematic reviews, which targeted prior decades. Table 8 shows the comparison.

Comparison of most and least studied online learning research themes from current to previous reviews.

Level1990–1999 ( )1993–2004 ( )2000–2008 ( )2009–2018 (Current Study)
Learner CharacteristicsLXXX
Engagement and InteractionLXXX
Design Issues/Instructional DesignCXX
Course Environment
Learner Outcomes
C
L
X
X
Learner SupportLX
Equity and AccessibilityOXX
Institutional& Administrative FactorsOXX
Management and OrganizationOXX
Cost-BenefitOX

L = Learner, C=Course O=Organization.

5.4. Need for more studies on organizational level themes of online learning

In this review there is a greater concentration of studies focused on Learner domain topics, and reduced attention to broader more encompassing research themes that fall into the Course and Organization domains. There is a need for organizational level topics such as Access, Culture, Equity, Inclusion and Ethics, and Leadership, Policy and Management to be researched on within the context of online learning. Examination of access, culture, equity, inclusion and ethics is very important to support diverse online learners, particularly with the rapid expansion of online learning across all educational levels. This was also least studied based on Berge and Mrozowski (2001) systematic review.

The topics on leadership, policy and management were least studied both in this review and also in the Tallent-Runnels et al. (2006) and Zawacki-Richter et al. (2009) study. Tallent-Runnels categorized institutional and administrative aspects into institutional policies, institutional support, and enrollment effects. While we included support as a separate category, in this study leadership, policy and management were combined. There is still a need for research on leadership of those who manage online learning, policies for online education, and managing online programs. In the Zawacki-Richter et al. (2009) study, only a few studies examined management and organization focused topics. They also found management and organization to be strongly correlated with costs and benefits. In our study, costs and benefits were collectively included as an aspect of management and organization and not as a theme by itself. These studies will provide research-based evidence for online education administrators.

6. Limitations

As with any systematic review, there are limitations to the scope of the review. The search is limited to twelve journals in the field that typically include research on online learning. These manuscripts were identified by searching the Education Research Complete database which focuses on education students, professionals, and policymakers. Other discipline-specific journals as well as dissertations and proceedings were not included due to the volume of articles. Also, the search was performed using five search terms “online learning" OR "online teaching" OR "online program" OR "online course" OR “online education” in title and keyword. If authors did not include these terms, their respective work may have been excluded from this review even if it focused on online learning. While these terms are commonly used in North America, it may not be commonly used in other parts of the world. Additional studies may exist outside this scope.

The search strategy also affected how we presented results and introduced limitations regarding generalization. We identified that only 8% of the articles published in these journals were related to online learning; however, given the use of search terms to identify articles within select journals it was not feasible to identify the total number of research-based articles in the population. Furthermore, our review focused on the topics and general methods of research and did not systematically consider the quality of the published research. Lastly, some journals may have preferences for publishing studies on a particular topic or that use a particular method (e.g., quantitative methods), which introduces possible selection and publication biases which may skew the interpretation of results due to over/under representation. Future studies are recommended to include more journals to minimize the selection bias and obtain a more representative sample.

Certain limitations can be attributed to the coding process. Overall, the coding process for this review worked well for most articles, as each tended to have an individual or dominant focus as described in the abstracts, though several did mention other categories which likely were simultaneously considered to a lesser degree. However, in some cases, a dominant theme was not as apparent and an effort to create mutually exclusive groups for clearer interpretation the coders were occasionally forced to choose between two categories. To facilitate this coding, the full-texts were used to identify a study focus through a consensus seeking discussion among all authors. Likewise, some studies focused on topics that we have associated with a particular domain, but the design of the study may have promoted an aggregated examination or integrated factors from multiple domains (e.g., engagement). Due to our reliance on author descriptions, the impact of construct validity is likely a concern that requires additional exploration. Our final grouping of codes may not have aligned with the original author's description in the abstract. Additionally, coding of broader constructs which disproportionately occur in the Learner domain, such as learner outcomes, learner characteristics, and engagement, likely introduced bias towards these codes when considering studies that involved multiple domains. Additional refinement to explore the intersection of domains within studies is needed.

7. Implications and future research

One of the strengths of this review is the research categories we have identified. We hope these categories will support future researchers and identify areas and levels of need for future research. Overall, there is some agreement on research themes on online learning research among previous reviews and this one, at the same time there are some contradicting findings. We hope the most-researched themes and least-researched themes provide authors a direction on the importance of research and areas of need to focus on.

The leading themes found in this review is online engagement research. However, presentation of this research was inconsistent, and often lacked specificity. This is not unique to online environments, but the nuances of defining engagement in an online environment are unique and therefore need further investigation and clarification. This review points to seven distinct classifications of online engagement. Further research on engagement should indicate which type of engagement is sought. This level of specificity is necessary to establish instruments for measuring engagement and ultimately testing frameworks for classifying engagement and promoting it in online environments. Also, it might be of importance to examine the relationship between these seven sub-themes of engagement.

Additionally, this review highlights growing attention to learner characteristics, which constitutes a shift in focus away from instructional characteristics and course design. Although this is consistent with the focus on engagement, the role of the instructor, and course design with respect to these outcomes remains important. Results of the learner characteristics and engagement research paired with course design will have important ramifications for the use of teaching and learning professionals who support instruction. Additionally, the review also points to a concentration of research in the area of higher education. With an immediate and growing emphasis on online learning in K-12 and corporate settings, there is a critical need for further investigation in these settings.

Lastly, because the present review did not focus on the overall effect of interventions, opportunities exist for dedicated meta-analyses. Particular attention to research on engagement and learner characteristics as well as how these vary by study design and outcomes would be logical additions to the research literature.

8. Conclusion

This systematic review builds upon three previous reviews which tackled the topic of online learning between 1990 and 2010 by extending the timeframe to consider the most recent set of published research. Covering the most recent decade, our review of 619 articles from 12 leading online learning journal points to a more concentrated focus on the learner domain including engagement and learner characteristics, with more limited attention to topics pertaining to the classroom or organizational level. The review highlights an opportunity for the field to clarify terminology concerning online learning research, particularly in the areas of learner outcomes where there is a tendency to classify research more generally (e.g., engagement). Using this sample of published literature, we provide a possible taxonomy for categorizing this research using subcategories. The field could benefit from a broader conversation about how these categories can shape a comprehensive framework for online learning research. Such efforts will enable the field to effectively prioritize research aims over time and synthesize effects.

Credit author statement

Florence Martin: Conceptualization; Writing - original draft, Writing - review & editing Preparation, Supervision, Project administration. Ting Sun: Methodology, Formal analysis, Writing - original draft, Writing - review & editing. Carl Westine: Methodology, Formal analysis, Writing - original draft, Writing - review & editing, Supervision

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

1 Includes articles that are cited in this manuscript and also included in the systematic review. The entire list of 619 articles used in the systematic review can be obtained by emailing the authors.*

Appendix B Supplementary data to this article can be found online at https://doi.org/10.1016/j.compedu.2020.104009 .

Appendix A. 

Research Themes by the Settings in the Online Learning Publications

Research ThemeHigher Ed (  = 506)Continuing Education (  = 58)K-12 (  = 53)Corporate/Military (  = 3)
Engagement15315120
Presence46230
Interaction35440
Community19240
Participation16500
Collaboration16100
Involvement13010
Communication8100
Learner Characteristics1061891
Self-regulation Characteristics43920
Motivation Characteristics18320
Academic Characteristics17020
Affective Characteristics12311
Cognitive Characteristics11120
Demographic Characteristics5200
Evaluation and Quality Assurance33320
Course Technologies33200
Course Facilitation30310
Institutional Support24081
Learner Outcome24710
Course Assessment23250
Access, Culture, Equity, Inclusion and Ethics26120
Leadership, Policy and Management17550
Course Design and Development21141
Instructor Characteristics16140

Research Themes by the Methodology in the Online Learning Publications

Research ThemeMixed Method (  = 95)Quantitative (  = 324)Qualitative (  = 200)
Engagement327869
Presence112514
Interaction92014
Community2914
Participation687
Collaboration2510
Involvement266
Communication054
Learner Characteristics1610018
Self-regulation Characteristics5436
Motivation Characteristics4154
Academic Characteristics1153
Affective Characteristics2123
Cognitive Characteristics482
Demographic Characteristics160
Evaluation and Quality Assurance52211
Course Technologies42011
Course Facilitation71413
Institutional Support12912
Learner Outcome3236
Course Assessment5205
Access, Culture, Equity, Inclusion & Ethics31313
Leadership, Policy and Management5913
Course Design and Development2817
Instructor Characteristics1812

Appendix B. Supplementary data

The following are the Supplementary data to this article:

References 1

  • Ahn J., Butler B.S., Alam A., Webster S.A. Learner participation and engagement in open online courses: Insights from the Peer 2 Peer University. MERLOT Journal of Online Learning and Teaching. 2013; 9 (2):160–171. * [ Google Scholar ]
  • Akcaoglu M., Lee E. Increasing social presence in online learning through small group discussions. International Review of Research in Open and Distance Learning. 2016; 17 (3) * [ Google Scholar ]
  • Allen I.E., Seaman J. Babson survey research group; 2017. Digital compass learning: Distance education enrollment Report 2017. [ Google Scholar ]
  • Amador J.A., Mederer H. Migrating successful student engagement strategies online: Opportunities and challenges using jigsaw groups and problem-based learning. Journal of Online Learning and Teaching. 2013; 9 (1):89. * [ Google Scholar ]
  • Anderson L.W., Bourke S.F. Routledge; 2013. Assessing affective characteristics in the schools. [ Google Scholar ]
  • Archibald D. Fostering the development of cognitive presence: Initial findings using the community of inquiry survey instrument. The Internet and Higher Education. 2010; 13 (1–2):73–74. * [ Google Scholar ]
  • Artino A.R., Jr., Stephens J.M. Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. The Internet and Higher Education. 2009; 12 (3–4):146–151. [ Google Scholar ]
  • Barnard L., Lan W.Y., To Y.M., Paton V.O., Lai S.L. Measuring self-regulation in online and blended learning environments. Internet and Higher Education. 2009; 12 (1):1–6. * [ Google Scholar ]
  • Bayeck R.Y., Hristova A., Jablokow K.W., Bonafini F. Exploring the relevance of single‐gender group formation: What we learn from a massive open online course (MOOC) British Journal of Educational Technology. 2018; 49 (1):88–100. * [ Google Scholar ]
  • Berge Z., Mrozowski S. Review of research in distance education, 1990 to 1999. American Journal of Distance Education. 2001; 15 (3):5–19. doi: 10.1080/08923640109527090. [ CrossRef ] [ Google Scholar ]
  • Berry S. Building community in online doctoral classrooms: Instructor practices that support community. Online Learning. 2017; 21 (2):n2. * [ Google Scholar ]
  • Boling E.C., Holan E., Horbatt B., Hough M., Jean-Louis J., Khurana C., Spiezio C. Using online tools for communication and collaboration: Understanding educators' experiences in an online course. The Internet and Higher Education. 2014; 23 :48–55. * [ Google Scholar ]
  • Bolliger D.U., Inan F.A. Development and validation of the online student connectedness survey (OSCS) International Review of Research in Open and Distance Learning. 2012; 13 (3):41–65. * [ Google Scholar ]
  • Bradford G., Wyatt S. Online learning and student satisfaction: Academic standing, ethnicity and their influence on facilitated learning, engagement, and information fluency. The Internet and Higher Education. 2010; 13 (3):108–114. * [ Google Scholar ]
  • Broadbent J. Comparing online and blended learner's self-regulated learning strategies and academic performance. The Internet and Higher Education. 2017; 33 :24–32. [ Google Scholar ]
  • Buzdar M., Ali A., Tariq R. Emotional intelligence as a determinant of readiness for online learning. International Review of Research in Open and Distance Learning. 2016; 17 (1) * [ Google Scholar ]
  • Capdeferro N., Romero M., Barberà E. Polychronicity: Review of the literature and a new configuration for the study of this hidden dimension of online learning. Distance Education. 2014; 35 (3):294–310. [ Google Scholar ]
  • Chaiprasurt C., Esichaikul V. Enhancing motivation in online courses with mobile communication tool support: A comparative study. International Review of Research in Open and Distance Learning. 2013; 14 (3):377–401. [ Google Scholar ]
  • Chen C.H., Wu I.C. The interplay between cognitive and motivational variables in a supportive online learning system for secondary physical education. Computers & Education. 2012; 58 (1):542–550. * [ Google Scholar ]
  • Cho H. Under co-construction: An online community of practice for bilingual pre-service teachers. Computers & Education. 2016; 92 :76–89. * [ Google Scholar ]
  • Cho M.H., Shen D. Self-regulation in online learning. Distance Education. 2013; 34 (3):290–301. [ Google Scholar ]
  • Cole M.T., Shelley D.J., Swartz L.B. Online instruction, e-learning, and student satisfaction: A three-year study. International Review of Research in Open and Distance Learning. 2014; 15 (6) * [ Google Scholar ]
  • Comer D.K., Clark C.R., Canelas D.A. Writing to learn and learning to write across the disciplines: Peer-to-peer writing in introductory-level MOOCs. International Review of Research in Open and Distance Learning. 2014; 15 (5):26–82. * [ Google Scholar ]
  • Cundell A., Sheepy E. Student perceptions of the most effective and engaging online learning activities in a blended graduate seminar. Online Learning. 2018; 22 (3):87–102. * [ Google Scholar ]
  • Cung B., Xu D., Eichhorn S. Increasing interpersonal interactions in an online course: Does increased instructor email activity and voluntary meeting time in a physical classroom facilitate student learning? Online Learning. 2018; 22 (3):193–215. [ Google Scholar ]
  • Cunningham U.M., Fägersten K.B., Holmsten E. Can you hear me, Hanoi?" Compensatory mechanisms employed in synchronous net-based English language learning. International Review of Research in Open and Distance Learning. 2010; 11 (1):161–177. [ Google Scholar ]
  • Davis D., Chen G., Hauff C., Houben G.J. Activating learning at scale: A review of innovations in online learning strategies. Computers & Education. 2018; 125 :327–344. [ Google Scholar ]
  • Delen E., Liew J., Willson V. Effects of interactivity and instructional scaffolding on learning: Self-regulation in online video-based environments. Computers & Education. 2014; 78 :312–320. [ Google Scholar ]
  • Dixson M.D. Measuring student engagement in the online course: The Online Student Engagement scale (OSE) Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Dray B.J., Lowenthal P.R., Miszkiewicz M.J., Ruiz‐Primo M.A., Marczynski K. Developing an instrument to assess student readiness for online learning: A validation study. Distance Education. 2011; 32 (1):29–47. * [ Google Scholar ]
  • Dziuban C., Moskal P., Thompson J., Kramer L., DeCantis G., Hermsdorfer A. Student satisfaction with online learning: Is it a psychological contract? Online Learning. 2015; 19 (2):n2. * [ Google Scholar ]
  • Ergün E., Usluel Y.K. An analysis of density and degree-centrality according to the social networking structure formed in an online learning environment. Journal of Educational Technology & Society. 2016; 19 (4):34–46. * [ Google Scholar ]
  • Esfijani A. Measuring quality in online education: A meta-synthesis. American Journal of Distance Education. 2018; 32 (1):57–73. [ Google Scholar ]
  • Glazer H.R., Murphy J.A. Optimizing success: A model for persistence in online education. American Journal of Distance Education. 2015; 29 (2):135–144. [ Google Scholar ]
  • Glazer H.R., Wanstreet C.E. Connection to the academic community: Perceptions of students in online education. Quarterly Review of Distance Education. 2011; 12 (1):55. * [ Google Scholar ]
  • Hartnett M., George A.S., Dron J. Examining motivation in online distance learning environments: Complex, multifaceted and situation-dependent. International Review of Research in Open and Distance Learning. 2011; 12 (6):20–38. [ Google Scholar ]
  • Harwell M.R. 2012. Research design in qualitative/quantitative/mixed methods. Section III. Opportunities and challenges in designing and conducting inquiry. [ Google Scholar ]
  • Hung J.L. Trends of e‐learning research from 2000 to 2008: Use of text mining and bibliometrics. British Journal of Educational Technology. 2012; 43 (1):5–16. [ Google Scholar ]
  • Jiang W. Interdependence of roles, role rotation, and sense of community in an online course. Distance Education. 2017; 38 (1):84–105. [ Google Scholar ]
  • Ke F., Kwak D. Online learning across ethnicity and age: A study on learning interaction participation, perception, and learning satisfaction. Computers & Education. 2013; 61 :43–51. [ Google Scholar ]
  • Kent M. Changing the conversation: Facebook as a venue for online class discussion in higher education. MERLOT Journal of Online Learning and Teaching. 2013; 9 (4):546–565. * [ Google Scholar ]
  • Kim C., Park S.W., Cozart J. Affective and motivational factors of learning in online mathematics courses. British Journal of Educational Technology. 2014; 45 (1):171–185. [ Google Scholar ]
  • Kizilcec R.F., Pérez-Sanagustín M., Maldonado J.J. Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & Education. 2017; 104 :18–33. [ Google Scholar ]
  • Kopp B., Matteucci M.C., Tomasetto C. E-tutorial support for collaborative online learning: An explorative study on experienced and inexperienced e-tutors. Computers & Education. 2012; 58 (1):12–20. [ Google Scholar ]
  • Koseoglu S., Doering A. Understanding complex ecologies: An investigation of student experiences in adventure learning programs. Distance Education. 2011; 32 (3):339–355. * [ Google Scholar ]
  • Kumi-Yeboah A. Designing a cross-cultural collaborative online learning framework for online instructors. Online Learning. 2018; 22 (4):181–201. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Belland B.R., Schroder K.E. A predictive study of student satisfaction in online education programs. International Review of Research in Open and Distance Learning. 2013; 14 (1):16–39. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Schroder K.E., Belland B.R. Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet and Higher Education. 2014; 20 :35–50. * [ Google Scholar ]
  • Lee J. An exploratory study of effective online learning: Assessing satisfaction levels of graduate students of mathematics education associated with human and design factors of an online course. International Review of Research in Open and Distance Learning. 2014; 15 (1) [ Google Scholar ]
  • Lee S.M. The relationships between higher order thinking skills, cognitive density, and social presence in online learning. The Internet and Higher Education. 2014; 21 :41–52. * [ Google Scholar ]
  • Lee K. Rethinking the accessibility of online higher education: A historical review. The Internet and Higher Education. 2017; 33 :15–23. [ Google Scholar ]
  • Lee Y., Choi J. A review of online course dropout research: Implications for practice and future research. Educational Technology Research & Development. 2011; 59 (5):593–618. [ Google Scholar ]
  • Li L.Y., Tsai C.C. Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education. 2017; 114 :286–297. [ Google Scholar ]
  • Liyanagunawardena T., Adams A., Williams S. MOOCs: A systematic study of the published literature 2008-2012. International Review of Research in Open and Distance Learning. 2013; 14 (3):202–227. [ Google Scholar ]
  • Lowes S., Lin P., Kinghorn B.R. Gender differences in online high school courses. Online Learning. 2016; 20 (4):100–117. [ Google Scholar ]
  • Marbouti F., Wise A.F. Starburst: A new graphical interface to support purposeful attention to others' posts in online discussions. Educational Technology Research & Development. 2016; 64 (1):87–113. * [ Google Scholar ]
  • Martin F., Ahlgrim-Delzell L., Budhrani K. Systematic review of two decades (1995 to 2014) of research on synchronous online learning. American Journal of Distance Education. 2017; 31 (1):3–19. [ Google Scholar ]
  • Moore-Adams B.L., Jones W.M., Cohen J. Learning to teach online: A systematic review of the literature on K-12 teacher preparation for teaching online. Distance Education. 2016; 37 (3):333–348. [ Google Scholar ]
  • Murphy E., Rodríguez-Manzanares M.A. Rapport in distance education. International Review of Research in Open and Distance Learning. 2012; 13 (1):167–190. * [ Google Scholar ]
  • Nye A. Building an online academic learning community among undergraduate students. Distance Education. 2015; 36 (1):115–128. * [ Google Scholar ]
  • Olesova L., Slavin M., Lim J. Exploring the effect of scripted roles on cognitive presence in asynchronous online discussions. Online Learning. 2016; 20 (4):34–53. * [ Google Scholar ]
  • Orcutt J.M., Dringus L.P. Beyond being there: Practices that establish presence, engage students and influence intellectual curiosity in a structured online learning environment. Online Learning. 2017; 21 (3):15–35. * [ Google Scholar ]
  • Overbaugh R.C., Nickel C.E. A comparison of student satisfaction and value of academic community between blended and online sections of a university-level educational foundations course. The Internet and Higher Education. 2011; 14 (3):164–174. * [ Google Scholar ]
  • O'Shea S., Stone C., Delahunty J. “I ‘feel’like I am at university even though I am online.” Exploring how students narrate their engagement with higher education institutions in an online learning environment. Distance Education. 2015; 36 (1):41–58. * [ Google Scholar ]
  • Paechter M., Maier B. Online or face-to-face? Students' experiences and preferences in e-learning. Internet and Higher Education. 2010; 13 (4):292–297. [ Google Scholar ]
  • Phirangee K. Students' perceptions of learner-learner interactions that weaken a sense of community in an online learning environment. Online Learning. 2016; 20 (4):13–33. * [ Google Scholar ]
  • Phirangee K., Malec A. Othering in online learning: An examination of social presence, identity, and sense of community. Distance Education. 2017; 38 (2):160–172. * [ Google Scholar ]
  • Preisman K.A. Teaching presence in online education: From the instructor's point of view. Online Learning. 2014; 18 (3):n3. * [ Google Scholar ]
  • Rowe M. Developing graduate attributes in an open online course. British Journal of Educational Technology. 2016; 47 (5):873–882. * [ Google Scholar ]
  • Ruane R., Koku E.F. Social network analysis of undergraduate education student interaction in online peer mentoring settings. Journal of Online Learning and Teaching. 2014; 10 (4):577–589. * [ Google Scholar ]
  • Ruane R., Lee V.J. Analysis of discussion board interaction in an online peer mentoring site. Online Learning. 2016; 20 (4):79–99. * [ Google Scholar ]
  • Rye S.A., Støkken A.M. The implications of the local context in global virtual education. International Review of Research in Open and Distance Learning. 2012; 13 (1):191–206. * [ Google Scholar ]
  • Saadatmand M., Kumpulainen K. Participants' perceptions of learning and networking in connectivist MOOCs. Journal of Online Learning and Teaching. 2014; 10 (1):16. * [ Google Scholar ]
  • Shackelford J.L., Maxwell M. Sense of community in graduate online education: Contribution of learner to learner interaction. International Review of Research in Open and Distance Learning. 2012; 13 (4):228–249. * [ Google Scholar ]
  • Shea P., Bidjerano T. Does online learning impede degree completion? A national study of community college students. Computers & Education. 2014; 75 :103–111. * [ Google Scholar ]
  • Sherry L. Issues in distance learning. International Journal of Educational Telecommunications. 1996; 1 (4):337–365. [ Google Scholar ]
  • Slagter van Tryon P.J., Bishop M.J. Evaluating social connectedness online: The design and development of the social perceptions in learning contexts instrument. Distance Education. 2012; 33 (3):347–364. * [ Google Scholar ]
  • Swaggerty E.A., Broemmel A.D. Authenticity, relevance, and connectedness: Graduate students' learning preferences and experiences in an online reading education course. The Internet and Higher Education. 2017; 32 :80–86. * [ Google Scholar ]
  • Tallent-Runnels M.K., Thomas J.A., Lan W.Y., Cooper S., Ahern T.C., Shaw S.M., Liu X. Teaching courses online: A review of the research. Review of Educational Research. 2006; 76 (1):93–135. doi: 10.3102/00346543076001093. [ CrossRef ] [ Google Scholar ]
  • Tawfik A.A., Giabbanelli P.J., Hogan M., Msilu F., Gill A., York C.S. Effects of success v failure cases on learner-learner interaction. Computers & Education. 2018; 118 :120–132. [ Google Scholar ]
  • Thomas J. Exploring the use of asynchronous online discussion in health care education: A literature review. Computers & Education. 2013; 69 :199–215. [ Google Scholar ]
  • Thormann J., Fidalgo P. Guidelines for online course moderation and community building from a student's perspective. Journal of Online Learning and Teaching. 2014; 10 (3):374–388. * [ Google Scholar ]
  • Tibi M.H. Computer science students' attitudes towards the use of structured and unstructured discussion forums in fully online courses. Online Learning. 2018; 22 (1):93–106. * [ Google Scholar ]
  • Tsai C.W., Chiang Y.C. Research trends in problem‐based learning (pbl) research in e‐learning and online education environments: A review of publications in SSCI‐indexed journals from 2004 to 2012. British Journal of Educational Technology. 2013; 44 (6):E185–E190. [ Google Scholar ]
  • Tsai C.W., Fan Y.T. Research trends in game‐based learning research in online learning environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E115–E119. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Chiang Y.C. Research trends in meaningful learning research on e‐learning and online education environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (6):E179–E184. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Fan Y.T. Research trends in self‐regulated learning research in online learning environments: A review of studies published in selected journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E107–E110. [ Google Scholar ]
  • U.S. Department of Education, Institute of Education Sciences . InstituteofEducationSciences; Washington,DC: 2017. What Works Clearinghouse procedures and standards handbook, version3.0. https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_procedures_v3_0_standards_handbook.pdf Retrievedfrom. [ Google Scholar ]
  • Veletsianos G., Shepherdson P. A systematic analysis and synthesis of the empirical MOOC literature published in 2013–2015. International Review of Research in Open and Distance Learning. 2016; 17 (2) [ Google Scholar ]
  • VERBI Software . 2019. MAXQDA 2020 online manual. Retrieved from maxqda. Com/help-max20/welcome [ Google Scholar ]
  • Verstegen D., Dailey-Hebert A., Fonteijn H., Clarebout G., Spruijt A. How do virtual teams collaborate in online learning tasks in a MOOC? International Review of Research in Open and Distance Learning. 2018; 19 (4) * [ Google Scholar ]
  • Wang Y., Baker R. Grit and intention: Why do learners complete MOOCs? International Review of Research in Open and Distance Learning. 2018; 19 (3) * [ Google Scholar ]
  • Wei C.W., Chen N.S., Kinshuk A model for social presence in online classrooms. Educational Technology Research & Development. 2012; 60 (3):529–545. * [ Google Scholar ]
  • Wicks D., Craft B.B., Lee D., Lumpe A., Henrikson R., Baliram N., Wicks K. An evaluation of low versus high collaboration in online learning. Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Wise A.F., Perera N., Hsiao Y.T., Speer J., Marbouti F. Microanalytic case studies of individual participation patterns in an asynchronous online discussion in an undergraduate blended course. The Internet and Higher Education. 2012; 15 (2):108–117. * [ Google Scholar ]
  • Wisneski J.E., Ozogul G., Bichelmeyer B.A. Does teaching presence transfer between MBA teaching environments? A comparative investigation of instructional design practices associated with teaching presence. The Internet and Higher Education. 2015; 25 :18–27. * [ Google Scholar ]
  • Wladis C., Hachey A.C., Conway K. An investigation of course-level factors as predictors of online STEM course outcomes. Computers & Education. 2014; 77 :145–150. * [ Google Scholar ]
  • Wladis C., Samuels J. Do online readiness surveys do what they claim? Validity, reliability, and subsequent student enrollment decisions. Computers & Education. 2016; 98 :39–56. [ Google Scholar ]
  • Yamagata-Lynch L.C. Blending online asynchronous and synchronous learning. International Review of Research in Open and Distance Learning. 2014; 15 (2) * [ Google Scholar ]
  • Yang J., Kinshuk, Yu H., Chen S.J., Huang R. Strategies for smooth and effective cross-cultural online collaborative learning. Journal of Educational Technology & Society. 2014; 17 (3):208–221. * [ Google Scholar ]
  • Yeboah A.K., Smith P. Relationships between minority students online learning experiences and academic performance. Online Learning. 2016; 20 (4):n4. * [ Google Scholar ]
  • Yu T. Examining construct validity of the student online learning readiness (SOLR) instrument using confirmatory factor analysis. Online Learning. 2018; 22 (4):277–288. * [ Google Scholar ]
  • Yukselturk E., Bulut S. Gender differences in self-regulated online learning environment. Educational Technology & Society. 2009; 12 (3):12–22. [ Google Scholar ]
  • Yukselturk E., Top E. Exploring the link among entry characteristics, participation behaviors and course outcomes of online learners: An examination of learner profile using cluster analysis. British Journal of Educational Technology. 2013; 44 (5):716–728. [ Google Scholar ]
  • Zawacki-Richter O., Backer E., Vogt S. Review of distance education research (2000 to 2008): Analysis of research areas, methods, and authorship patterns. International Review of Research in Open and Distance Learning. 2009; 10 (6):30. doi: 10.19173/irrodl.v10i6.741. [ CrossRef ] [ Google Scholar ]
  • Zhu M., Sari A., Lee M.M. A systematic review of research methods and topics of the empirical MOOC literature (2014–2016) The Internet and Higher Education. 2018; 37 :31–39. [ Google Scholar ]
  • Zimmerman T.D. Exploring learner to content interaction as a success factor in online courses. International Review of Research in Open and Distance Learning. 2012; 13 (4):152–165. [ Google Scholar ]

By providing an email address. I agree to the Terms of Use and acknowledge that I have read the Privacy Policy .

The struggle for connection and other challenges in online distance learning

Blended learning has introduced a unique set of challenges for both teachers and students in public schools. The shift to online distance learning, initially adopted to continue education during the pandemic, has proven to be a complex adjustment for many. A significant issue encountered by teachers is the insufficient internet data available to students. Many learners start a lesson only to run out of data midway, causing them to drop out of class. This struggle for connection is further compounded by poor signal quality, which students often claim as the reason for not participating in recitations, or for the choppy communication during online classes. These technical difficulties create a barrier to effective learning and meaningful interaction.

Moreover, the flexibility of online learning can sometimes work against student engagement. Some learners are tempted to skip classes, citing poor internet connectivity as an excuse, while others are distracted by the comfort of their homes. The home environment, filled with potential distractions, competes with the focus required for schoolwork. This situation is exacerbated by the temptation to manage other personal matters during school hours, leading to further disengagement from the learning process.

In many schools across the country, the struggle for online connection is even more pronounced. Numerous public schools were asked to offer senior high school programs despite lacking the necessary facilities. Without adequate classrooms and resources, these schools resorted to blended learning as a solution. However, the lack of infrastructure makes it difficult to deliver quality education through this mode. Said one learner: “I feel like I’m not learning as much as those in schools that have full face-to-face classes. It’s frustrating because I want to do well, but it feels like I’m missing out on a lot.”

As a teacher, I can personally attest that this mode of learning is not effective and cannot be a substitute for face-to-face interaction. The in-person classroom experience is crucial for helping learners become engaged with and understand the material better. There is no replacement for the dynamic interactions and immediate feedback that occur in a physical classroom, where students are more focused and less prone to distractions. The investment in classrooms and physical infrastructure is essential to ensure that education is effective, and that students can learn in an environment conducive to their academic and personal development.

This struggle for connection highlights the difficulties teachers face in maintaining student participation and engagement in a blended learning setup. The lack of direct supervision and the myriad distractions at home make it difficult for students to remain committed to their studies, posing a significant hurdle to the success of blended learning in public schools.

Teachers are tasked not only with delivering educational content, but also with finding innovative ways to keep students engaged and accountable in a learning environment that is far less structured than the traditional classroom. Investing in classroom infrastructure and returning to face-to-face learning is a step toward ensuring that students receive the best possible education. While technology has its place, it should complement rather than replace the traditional classroom experience, which remains vital for student success.

Maria Teresa B. Macasinag, Rizal National High School, Baguio City

Subscribe to our daily newsletter

pdi

Fearless views on the news

Disclaimer: Comments do not represent the views of INQUIRER.net. We reserve the right to exclude comments which are inconsistent with our editorial standards. FULL DISCLAIMER

© copyright 1997-2024 inquirer.net | all rights reserved.

We use cookies to ensure you get the best experience on our website. By continuing, you are agreeing to our use of cookies. To find out more, please click this link.

IMAGES

  1. (PDF) RESEARCH ON ONLINE LEARNING

    research paper about online distance learning

  2. (PDF) Collaborative online distance learning: Issues for future

    research paper about online distance learning

  3. (PDF) Research Notes: Interim Report: A Case Study of Internet-Based

    research paper about online distance learning

  4. What is Distance Learning? The Complete Guide

    research paper about online distance learning

  5. (PDF) Distance Learners' Experiences on Learning Delivery Modality

    research paper about online distance learning

  6. (PDF) ODL: Online Distance Learning of Quantitative Courses in Higher

    research paper about online distance learning

VIDEO

  1. How to access and download paid research papers for free (all steps)?

  2. What is The Importance of Research in Environmental Science

  3. How to Write Research Paper

  4. पिता का कर्ज अदा करने के लिए पूरे दुनिया की दौलत भी कुछ नहीं || Capt. Zile Singh Academy

  5. Free AI Tool for Literature Review|Generate High Quality content |PDF Flex| Chat with Research Paper

  6. Get Your research paper easily just in few clicks....✌🏻📋

COMMENTS

  1. Examining research on the impact of distance and online learning: A

    Research and best practices on distance and online learning have been implemented in several distance courses (Seaman et al., 2018). Meta-analytic research reviews offer a critical synthesis of an entire body of research to help individuals understand the results of individual studies in the context of others ( Borenstein et al., 2009 ).

  2. The effects of online education on academic success: A meta ...

    The purpose of this study is to analyze the effect of online education, which has been extensively used on student achievement since the beginning of the pandemic. In line with this purpose, a meta-analysis of the related studies focusing on the effect of online education on students' academic achievement in several countries between the years 2010 and 2021 was carried out. Furthermore, this ...

  3. Navigating the New Normal: Adapting Online and Distance Learning in the

    This review examines the transformation of educational practices to online and distance learning during the COVID-19 pandemic. It specifically focuses on the challenges, innovative approaches, and successes of this transition, emphasizing the integration of educational technology, student well-being, and teacher development. The COVID-19 pandemic has significantly transformed the educational ...

  4. A systematic review of research on online teaching and learning from

    Tallent-Runnels et al. (2006) reviewed research late 1990's to early 2000's, Berge and Mrozowski (2001) reviewed research 1990 to 1999, and Zawacki-Richter et al. (2009) reviewed research in 2000-2008 on distance education and online learning. Table 1 shows the research themes from previous systematic reviews on online learning research.

  5. Online education in the post-COVID era

    The COVID-19 pandemic has forced the world to engage in the ubiquitous use of virtual learning. And while online and distance learning has been used before to maintain continuity in education ...

  6. Insights Into Students' Experiences and Perceptions of Remote Learning

    This result is consistent with prior research on the value of active learning (Freeman et al., 2014). Though research shows that student learning improves in active learning classes, on campus, student perceptions of their learning, enjoyment, and satisfaction with instruction are often lower in active-learning courses (Deslauriers et al., 2019 ...

  7. Online Learning: A Panacea in the Time of COVID-19 Crisis

    Rapid developments in technology have made distance education easy (McBrien et al., 2009).). "Most of the terms (online learning, open learning, web-based learning, computer-mediated learning, blended learning, m-learning, for ex.) have in common the ability to use a computer connected to a network, that offers the possibility to learn from anywhere, anytime, in any rhythm, with any means ...

  8. PDF A Systematic Review of the Research Topics in Online Learning During

    Table 1 summarizes the 12 topics in online learning research in the current research and compares it to Martin et al.'s (2020) study, as shown in Figure 1. The top research theme in our study was engagement (22.5%), followed by course design and development (12.6%) and course technology (11.0%).

  9. Distance Learning in Higher Education During Covid-19

    Firstly, the findings related to students' attitudes and opinions on distance learning were determined. The research team read selected sections independently. ... social presence and satisfaction among university students during the COVID-19 pandemic," in Paper Presented at ... Dolenc, K., and Šorgo, A. (2021). Changes in online distance ...

  10. Online vs in-person learning in higher education: effects on student

    The rapid expansion of distance learning in higher education, particularly highlighted during the recent COVID-19 pandemic (Volk et al., 2020; Bettinger et al., 2017), underscores the need for ...

  11. (PDF) Distance Learning

    Sveu čilište Jurja Dobrile u Puli. Preradovićeva 1/1, 52000 Pula. Tel +385 52 377 032. Hrvatska. [email protected]. Abstract: The present paper aims to review distance learning in the context of ...

  12. Review of Education

    This systematic analysis examines effectiveness research on online and blended learning from schools, particularly relevant during the Covid-19 pandemic, and also educational games, computer-supported cooperative learning (CSCL) and computer-assisted instruction (CAI), largely used in schools but with potential for outside school.

  13. Full article: Disrupted distance learning: the impact of Covid-19 on

    2.1. From face-to-face to online teaching. The Covid-19 pandemic has affected teaching and learning at almost all HEIs worldwide, with two-thirds reporting replacing classroom teaching with distance teaching and learning (Marinoni et al., Citation 2020).Large-scale research involving 31,212 students (Aristovnik et al., Citation 2020) explored the means of delivering distance learning content ...

  14. Online Teaching in K-12 Education in the United States: A Systematic

    A wide variety of terminology is used in varied and nuanced ways in educational literature to describe student learning mediated by technology, including terms such as virtual learning, distance learning, remote learning, e-learning, web-based learning, and online learning (e.g., Moore, Dickson-Deane, & Galyen, 2011; Singh & Thurman, 2019).For example, in a systematic review of the literature ...

  15. Students' experience of online learning during the COVID‐19 pandemic: A

    Online learning has been widely adopted during the COVID-19 pandemic to ensure the continuation of K-12 education. Student success in K-12 online education is substantially lower than in conventional schools. Students experienced various difficulties related to the delivery of online learning. What this paper adds Provide empirical evidence for ...

  16. Research trends in online distance learning during the COVID-19

    Online distance learning emerged as a solution to continue with teaching and learning during the COVID-19 pandemic, which led to more scholarly publications in the field. ... He has contributed several research papers in the field of scientometrics and return on investment analysis of libraries. Shriram Pandey. Shriram Pandey is currently ...

  17. Effective online teaching and learning strategies: interdisciplinary

    Higher Education has serious challenges regarding academic online teaching-learning-evaluation methods and tools. This study examined 980 students from diverse disciplines about their social ...

  18. The Impact of Online Learning on Student's Academic Performance

    online classes could affect the academic performance of students. This paper seeks to study the. impact of online learning on the academic performance of university students and to determine. whether education systems should increase the amount of online learning for traditional in-class. subjects.

  19. Online and face‐to‐face learning: Evidence from students' performance

    The seminal work from Russell and IDECC involved over 350 comparative studies on online/distance learning versus F2F learning, dating back to 1928. The author finds no significant difference overall between online and traditional F2F classroom education outcomes. ... As reported in 355 research reports, summaries and papers. North Carolina ...

  20. (Pdf) Research on Online Learning

    This paper analyzes the difficulties faced by the students and teachers in online teaching learning process during the COVID-19 pandemic. Online learning is an alternative platform that replaced ...

  21. PDF Students' Perceptions towards the Quality of Online Education: A

    online education courses can be found in a survey conducted by the U.S. Department of Education, which revealed that more than 54,000 online education courses were be ing offered in 1998, with over 1.6 million student's enrolled (cited in Lewis, et al., 1999). In a more recent study, Allen and Seaman (2003) reported that: (a) over 1.6 million

  22. Traditional Learning Compared to Online Learning During the COVID-19

    This paper focuses on the impact of the pandemic in the education sector. ... Perspectives of online instructors towards distance learning technologies at the Saudi ... The missing HEROs: The absence of, and need for, PsyCap research of online university students. Open Learning: The Journal of Open, Distance and e-Learning. Advance online ...

  23. A systematic review of research on online teaching and learning from

    Tallent-Runnels et al. (2006) reviewed research late 1990's to early 2000's, Berge and Mrozowski (2001) reviewed research 1990 to 1999, and Zawacki-Richter et al. (2009) reviewed research in 2000-2008 on distance education and online learning. Table 1 shows the research themes from previous systematic reviews on online learning research.

  24. PDF Learning From a Distance: The Experience of Remote Students

    Allen et al. (2004) suggest that the type of communication used in a distance course may influence satisfaction of students. Even if communication type was unimportant in terms of students' grades, it may still be important because student satisfaction is a major factor predicting drop-out and retention (Allen et al. 2002).

  25. The struggle for connection and other challenges in online distance

    The shift to online distance learning, initially adopted to continue education during the pandemic, has proven to be a complex adjustment for many. A significant issue encountered by teachers is the insufficient internet data available to students. Many learners start a lesson only to run out of data midway, causing them to drop out of class.