Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null and Alternative Hypotheses | Definitions & Examples

Published on 5 October 2022 by Shaun Turney . Revised on 6 December 2022.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis (H 0 ): There’s no effect in the population .
  • Alternative hypothesis (H A ): There’s an effect in the population.

The effect is usually the effect of the independent variable on the dependent variable .

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, differences between null and alternative hypotheses, how to write null and alternative hypotheses, frequently asked questions about null and alternative hypotheses.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”, the null hypothesis (H 0 ) answers “No, there’s no effect in the population.” On the other hand, the alternative hypothesis (H A ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample.

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept. Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect”, “no difference”, or “no relationship”. When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

( )
Does tooth flossing affect the number of cavities? Tooth flossing has on the number of cavities. test:

The mean number of cavities per person does not differ between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ = µ .

Does the amount of text highlighted in the textbook affect exam scores? The amount of text highlighted in the textbook has on exam scores. :

There is no relationship between the amount of text highlighted and exam scores in the population; β = 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression.* test:

The proportion of people with depression in the daily-meditation group ( ) is greater than or equal to the no-meditation group ( ) in the population; ≥ .

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis (H A ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect”, “a difference”, or “a relationship”. When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes > or <). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Does tooth flossing affect the number of cavities? Tooth flossing has an on the number of cavities. test:

The mean number of cavities per person differs between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ ≠ µ .

Does the amount of text highlighted in a textbook affect exam scores? The amount of text highlighted in the textbook has an on exam scores. :

There is a relationship between the amount of text highlighted and exam scores in the population; β ≠ 0.

Does daily meditation decrease the incidence of depression? Daily meditation the incidence of depression. test:

The proportion of people with depression in the daily-meditation group ( ) is less than the no-meditation group ( ) in the population; < .

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question
  • They both make claims about the population
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

A claim that there is in the population. A claim that there is in the population.

Equality symbol (=, ≥, or ≤) Inequality symbol (≠, <, or >)
Rejected Supported
Failed to reject Not supported

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis (H 0 ): Independent variable does not affect dependent variable .
  • Alternative hypothesis (H A ): Independent variable affects dependent variable .

Test-specific

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

( )
test 

with two groups

The mean dependent variable does not differ between group 1 (µ ) and group 2 (µ ) in the population; µ = µ . The mean dependent variable differs between group 1 (µ ) and group 2 (µ ) in the population; µ ≠ µ .
with three groups The mean dependent variable does not differ between group 1 (µ ), group 2 (µ ), and group 3 (µ ) in the population; µ = µ = µ . The mean dependent variable of group 1 (µ ), group 2 (µ ), and group 3 (µ ) are not all equal in the population.
There is no correlation between independent variable and dependent variable in the population; ρ = 0. There is a correlation between independent variable and dependent variable in the population; ρ ≠ 0.
There is no relationship between independent variable and dependent variable in the population; β = 0. There is a relationship between independent variable and dependent variable in the population; β ≠ 0.
Two-proportions test The dependent variable expressed as a proportion does not differ between group 1 ( ) and group 2 ( ) in the population; = . The dependent variable expressed as a proportion differs between group 1 ( ) and group 2 ( ) in the population; ≠ .

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Turney, S. (2022, December 06). Null and Alternative Hypotheses | Definitions & Examples. Scribbr. Retrieved 22 September 2024, from https://www.scribbr.co.uk/stats/null-and-alternative-hypothesis/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, levels of measurement: nominal, ordinal, interval, ratio, the standard normal distribution | calculator, examples & uses, types of variables in research | definitions & examples.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Null Hypothesis: Definition, Rejecting & Examples

By Jim Frost 6 Comments

What is a Null Hypothesis?

The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test.

Photograph of Rodin's statue, The Thinker who is pondering the null hypothesis.

  • Null Hypothesis H 0 : No effect exists in the population.
  • Alternative Hypothesis H A : The effect exists in the population.

In every study or experiment, researchers assess an effect or relationship. This effect can be the effectiveness of a new drug, building material, or other intervention that has benefits. There is a benefit or connection that the researchers hope to identify. Unfortunately, no effect may exist. In statistics, we call this lack of an effect the null hypothesis. Researchers assume that this notion of no effect is correct until they have enough evidence to suggest otherwise, similar to how a trial presumes innocence.

In this context, the analysts don’t necessarily believe the null hypothesis is correct. In fact, they typically want to reject it because that leads to more exciting finds about an effect or relationship. The new vaccine works!

You can think of it as the default theory that requires sufficiently strong evidence to reject. Like a prosecutor, researchers must collect sufficient evidence to overturn the presumption of no effect. Investigators must work hard to set up a study and a data collection system to obtain evidence that can reject the null hypothesis.

Related post : What is an Effect in Statistics?

Null Hypothesis Examples

Null hypotheses start as research questions that the investigator rephrases as a statement indicating there is no effect or relationship.

Does the vaccine prevent infections? The vaccine does not affect the infection rate.
Does the new additive increase product strength? The additive does not affect mean product strength.
Does the exercise intervention increase bone mineral density? The intervention does not affect bone mineral density.
As screen time increases, does test performance decrease? There is no relationship between screen time and test performance.

After reading these examples, you might think they’re a bit boring and pointless. However, the key is to remember that the null hypothesis defines the condition that the researchers need to discredit before suggesting an effect exists.

Let’s see how you reject the null hypothesis and get to those more exciting findings!

When to Reject the Null Hypothesis

So, you want to reject the null hypothesis, but how and when can you do that? To start, you’ll need to perform a statistical test on your data. The following is an overview of performing a study that uses a hypothesis test.

The first step is to devise a research question and the appropriate null hypothesis. After that, the investigators need to formulate an experimental design and data collection procedures that will allow them to gather data that can answer the research question. Then they collect the data. For more information about designing a scientific study that uses statistics, read my post 5 Steps for Conducting Studies with Statistics .

After data collection is complete, statistics and hypothesis testing enter the picture. Hypothesis testing takes your sample data and evaluates how consistent they are with the null hypothesis. The p-value is a crucial part of the statistical results because it quantifies how strongly the sample data contradict the null hypothesis.

When the sample data provide sufficient evidence, you can reject the null hypothesis. In a hypothesis test, this process involves comparing the p-value to your significance level .

Rejecting the Null Hypothesis

Reject the null hypothesis when the p-value is less than or equal to your significance level. Your sample data favor the alternative hypothesis, which suggests that the effect exists in the population. For a mnemonic device, remember—when the p-value is low, the null must go!

When you can reject the null hypothesis, your results are statistically significant. Learn more about Statistical Significance: Definition & Meaning .

Failing to Reject the Null Hypothesis

Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis. The sample data provides insufficient data to conclude that the effect exists in the population. When the p-value is high, the null must fly!

Note that failing to reject the null is not the same as proving it. For more information about the difference, read my post about Failing to Reject the Null .

That’s a very general look at the process. But I hope you can see how the path to more exciting findings depends on being able to rule out the less exciting null hypothesis that states there’s nothing to see here!

Let’s move on to learning how to write the null hypothesis for different types of effects, relationships, and tests.

Related posts : How Hypothesis Tests Work and Interpreting P-values

How to Write a Null Hypothesis

The null hypothesis varies by the type of statistic and hypothesis test. Remember that inferential statistics use samples to draw conclusions about populations. Consequently, when you write a null hypothesis, it must make a claim about the relevant population parameter . Further, that claim usually indicates that the effect does not exist in the population. Below are typical examples of writing a null hypothesis for various parameters and hypothesis tests.

Related posts : Descriptive vs. Inferential Statistics and Populations, Parameters, and Samples in Inferential Statistics

Group Means

T-tests and ANOVA assess the differences between group means. For these tests, the null hypothesis states that there is no difference between group means in the population. In other words, the experimental conditions that define the groups do not affect the mean outcome. Mu (µ) is the population parameter for the mean, and you’ll need to include it in the statement for this type of study.

For example, an experiment compares the mean bone density changes for a new osteoporosis medication. The control group does not receive the medicine, while the treatment group does. The null states that the mean bone density changes for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group means are equal in the population: µ 1 = µ 2 , or µ 1 – µ 2 = 0
  • Alternative Hypothesis H A : Group means are not equal in the population: µ 1 ≠ µ 2 , or µ 1 – µ 2 ≠ 0.

Group Proportions

Proportions tests assess the differences between group proportions. For these tests, the null hypothesis states that there is no difference between group proportions. Again, the experimental conditions did not affect the proportion of events in the groups. P is the population proportion parameter that you’ll need to include.

For example, a vaccine experiment compares the infection rate in the treatment group to the control group. The treatment group receives the vaccine, while the control group does not. The null states that the infection rates for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group proportions are equal in the population: p 1 = p 2 .
  • Alternative Hypothesis H A : Group proportions are not equal in the population: p 1 ≠ p 2 .

Correlation and Regression Coefficients

Some studies assess the relationship between two continuous variables rather than differences between groups.

In these studies, analysts often use either correlation or regression analysis . For these tests, the null states that there is no relationship between the variables. Specifically, it says that the correlation or regression coefficient is zero. As one variable increases, there is no tendency for the other variable to increase or decrease. Rho (ρ) is the population correlation parameter and beta (β) is the regression coefficient parameter.

For example, a study assesses the relationship between screen time and test performance. The null states that there is no correlation between this pair of variables. As screen time increases, test performance does not tend to increase or decrease.

  • Null Hypothesis H 0 : The correlation in the population is zero: ρ = 0.
  • Alternative Hypothesis H A : The correlation in the population is not zero: ρ ≠ 0.

For all these cases, the analysts define the hypotheses before the study. After collecting the data, they perform a hypothesis test to determine whether they can reject the null hypothesis.

The preceding examples are all for two-tailed hypothesis tests. To learn about one-tailed tests and how to write a null hypothesis for them, read my post One-Tailed vs. Two-Tailed Tests .

Related post : Understanding Correlation

Neyman, J; Pearson, E. S. (January 1, 1933).  On the Problem of the most Efficient Tests of Statistical Hypotheses .  Philosophical Transactions of the Royal Society A .  231  (694–706): 289–337.

Share this:

null hypothesis thesis example

Reader Interactions

' src=

January 11, 2024 at 2:57 pm

Thanks for the reply.

January 10, 2024 at 1:23 pm

Hi Jim, In your comment you state that equivalence test null and alternate hypotheses are reversed. For hypothesis tests of data fits to a probability distribution, the null hypothesis is that the probability distribution fits the data. Is this correct?

' src=

January 10, 2024 at 2:15 pm

Those two separate things, equivalence testing and normality tests. But, yes, you’re correct for both.

Hypotheses are switched for equivalence testing. You need to “work” (i.e., collect a large sample of good quality data) to be able to reject the null that the groups are different to be able to conclude they’re the same.

With typical hypothesis tests, if you have low quality data and a low sample size, you’ll fail to reject the null that they’re the same, concluding they’re equivalent. But that’s more a statement about the low quality and small sample size than anything to do with the groups being equal.

So, equivalence testing make you work to obtain a finding that the groups are the same (at least within some amount you define as a trivial difference).

For normality testing, and other distribution tests, the null states that the data follow the distribution (normal or whatever). If you reject the null, you have sufficient evidence to conclude that your sample data don’t follow the probability distribution. That’s a rare case where you hope to fail to reject the null. And it suffers from the problem I describe above where you might fail to reject the null simply because you have a small sample size. In that case, you’d conclude the data follow the probability distribution but it’s more that you don’t have enough data for the test to register the deviation. In this scenario, if you had a larger sample size, you’d reject the null and conclude it doesn’t follow that distribution.

I don’t know of any equivalence testing type approach for distribution fit tests where you’d need to work to show the data follow a distribution, although I haven’t looked for one either!

' src=

February 20, 2022 at 9:26 pm

Is a null hypothesis regularly (always) stated in the negative? “there is no” or “does not”

February 23, 2022 at 9:21 pm

Typically, the null hypothesis includes an equal sign. The null hypothesis states that the population parameter equals a particular value. That value is usually one that represents no effect. In the case of a one-sided hypothesis test, the null still contains an equal sign but it’s “greater than or equal to” or “less than or equal to.” If you wanted to translate the null hypothesis from its native mathematical expression, you could use the expression “there is no effect.” But the mathematical form more specifically states what it’s testing.

It’s the alternative hypothesis that typically contains does not equal.

There are some exceptions. For example, in an equivalence test where the researchers want to show that two things are equal, the null hypothesis states that they’re not equal.

In short, the null hypothesis states the condition that the researchers hope to reject. They need to work hard to set up an experiment and data collection that’ll gather enough evidence to be able to reject the null condition.

' src=

February 15, 2022 at 9:32 am

Dear sir I always read your notes on Research methods.. Kindly tell is there any available Book on all these..wonderfull Urgent

Comments and Questions Cancel reply

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing

Writing Null Hypotheses in Research and Statistics

Last Updated: September 2, 2024 Fact Checked

This article was co-authored by Joseph Quinones and by wikiHow staff writer, Jennifer Mueller, JD . Joseph Quinones is a Physics Teacher working at South Bronx Community Charter High School. Joseph specializes in astronomy and astrophysics and is interested in science education and science outreach, currently practicing ways to make physics accessible to more students with the goal of bringing more students of color into the STEM fields. He has experience working on Astrophysics research projects at the Museum of Natural History (AMNH). Joseph recieved his Bachelor's degree in Physics from Lehman College and his Masters in Physics Education from City College of New York (CCNY). He is also a member of a network called New York City Men Teach. There are 7 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 30,806 times.

Are you working on a research project and struggling with how to write a null hypothesis? Well, you've come to the right place! Keep reading to learn everything you need to know about the null hypothesis, including a review of what it is, how it relates to your research question and your alternative hypothesis, as well as how to use it in different types of studies.

Things You Should Know

  • Write a research null hypothesis as a statement that the studied variables have no relationship to each other, or that there's no difference between 2 groups.

{\displaystyle \mu _{1}=\mu _{2}}

  • Adjust the format of your null hypothesis to match the statistical method you used to test it, such as using "mean" if you're comparing the mean between 2 groups.

What is a null hypothesis?

A null hypothesis states that there's no relationship between 2 variables.

  • Research hypothesis: States in plain language that there's no relationship between the 2 variables or there's no difference between the 2 groups being studied.
  • Statistical hypothesis: States the predicted outcome of statistical analysis through a mathematical equation related to the statistical method you're using.

Examples of Null Hypotheses

Step 1 Research question:

Null Hypothesis vs. Alternative Hypothesis

Step 1 Null hypotheses and alternative hypotheses are mutually exclusive.

  • For example, your alternative hypothesis could state a positive correlation between 2 variables while your null hypothesis states there's no relationship. If there's a negative correlation, then both hypotheses are false.

Step 2 Proving the null hypothesis false is a precursor to proving the alternative.

  • You need additional data or evidence to show that your alternative hypothesis is correct—proving the null hypothesis false is just the first step.
  • In smaller studies, sometimes it's enough to show that there's some relationship and your hypothesis could be correct—you can leave the additional proof as an open question for other researchers to tackle.

How do I test a null hypothesis?

Use statistical methods on collected data to test the null hypothesis.

  • Group means: Compare the mean of the variable in your sample with the mean of the variable in the general population. [6] X Research source
  • Group proportions: Compare the proportion of the variable in your sample with the proportion of the variable in the general population. [7] X Research source
  • Correlation: Correlation analysis looks at the relationship between 2 variables—specifically, whether they tend to happen together. [8] X Research source
  • Regression: Regression analysis reveals the correlation between 2 variables while also controlling for the effect of other, interrelated variables. [9] X Research source

Templates for Null Hypotheses

Step 1 Group means

  • Research null hypothesis: There is no difference in the mean [dependent variable] between [group 1] and [group 2].

{\displaystyle \mu _{1}+\mu _{2}=0}

  • Research null hypothesis: The proportion of [dependent variable] in [group 1] and [group 2] is the same.

{\displaystyle p_{1}=p_{2}}

  • Research null hypothesis: There is no correlation between [independent variable] and [dependent variable] in the population.

\rho =0

  • Research null hypothesis: There is no relationship between [independent variable] and [dependent variable] in the population.

{\displaystyle \beta =0}

Expert Q&A

Joseph Quinones

You Might Also Like

Write a Reflection Paper

Expert Interview

null hypothesis thesis example

Thanks for reading our article! If you’d like to learn more about physics, check out our in-depth interview with Joseph Quinones .

  • ↑ https://online.stat.psu.edu/stat100/lesson/10/10.1
  • ↑ https://online.stat.psu.edu/stat501/lesson/2/2.12
  • ↑ https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistics/basic-statistics/supporting-topics/basics/null-and-alternative-hypotheses/
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635437/
  • ↑ https://online.stat.psu.edu/statprogram/reviews/statistical-concepts/hypothesis-testing
  • ↑ https://education.arcus.chop.edu/null-hypothesis-testing/
  • ↑ https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_hypothesistest-means-proportions/bs704_hypothesistest-means-proportions_print.html

About This Article

Joseph Quinones

  • Send fan mail to authors

Reader Success Stories

Mogens Get

Dec 3, 2022

Did this article help you?

null hypothesis thesis example

Featured Articles

Enjoy Your Preteen Years

Trending Articles

The Office Trivia Quiz

Watch Articles

Make French Fries

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

null hypothesis thesis example

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

How to Formulate a Hypothesis: Example and Explanation

Scientist writing hypothesis on transparent board with equations

A hypothesis is a smart guess about how things work. It helps scientists figure out what they think will happen in their experiments. Making a good hypothesis is important because it guides the research and helps find answers to questions. In this article, we will learn how to make a strong hypothesis, look at some examples, and understand why they matter.

Key Takeaways

  • A hypothesis is an educated guess that can be tested through experiments.
  • Good hypotheses are clear, precise, and can be proven wrong.
  • There are different types of hypotheses, like simple, complex, null, and alternative.
  • Variables play a big role in forming a hypothesis, including independent, dependent, and control variables.
  • Testing and refining hypotheses are crucial steps in scientific research.

Understanding the Concept of a Hypothesis

Definition and importance.

A hypothesis is an idea you can test. It's a clear statement predicting the outcome of your study. It's not just a guess ; it should be based on what you already know. A good hypothesis helps you focus your research and guides your experiments.

Role in Scientific Research

In science, a hypothesis is very important. It gives you a starting point for your experiments. You can test it to see if it's true or false. This helps you understand more about the world. A clear, testable hypothesis is key to good research .

Common Misconceptions

Many people think a hypothesis is just a wild guess. This is not true. A hypothesis is based on existing knowledge and theories. Another common mistake is making the hypothesis too broad. A good hypothesis should be specific and testable.

Steps to Formulate a Hypothesis

Formulating a hypothesis is a critical step in the scientific method. It involves several key stages that help ensure your hypothesis is both testable and relevant to your research question. Here are the steps you should follow:

Gathering Observations

Start by collecting as many observations about your topic or problem as possible. These observations will form the foundation of your hypothesis. Good clinical research starts from a plausible hypothesis supported by contemporary scientific knowledge. Look for patterns or trends in the data that might suggest a possible explanation.

Identifying Variables

Next, identify the variables involved in your study. Variables are the elements that you will measure or manipulate in your research. There are typically three types of variables: independent, dependent, and control variables. Understanding these will help you design a more effective experiment.

Developing Possible Explanations

Once you have gathered your observations and identified your variables, the next step is to develop possible explanations for the patterns you have observed. This is where you start to formulate your hypothesis. Think of ways to confirm or disprove each possible explanation through experimentation. This process is known as falsifiability and is crucial for a robust hypothesis.

Characteristics of a Good Hypothesis

Testability and falsifiability.

A good hypothesis must be testable, meaning you can design an experiment to check if it's true or false. Testability is crucial because it allows you to gather evidence to support or refute your hypothesis. Additionally, a hypothesis should be falsifiable, which means there should be a possible outcome that can prove it wrong. This aligns with the falsification principle proposed by Karl Popper, which is fundamental in scientific research.

Clarity and Precision

Your hypothesis should be clear and precise, avoiding any vague language. This clarity helps in demystifying the concept of a thesis statement . A well-defined hypothesis makes it easier to design experiments and interpret results. For example, instead of saying "Plants grow better with more light," you could say, "If plants receive 8 hours of sunlight daily, then they will grow taller than plants that receive 4 hours of sunlight daily."

Relevance to Research Question

A good hypothesis should be directly related to your research question. It should provide a clear direction for your study and help you focus on specific variables. This relevance ensures that your hypothesis is not just a random guess but is grounded in existing knowledge and observations. Hypotheses have strong, arguably foundational, utility as a tool of science . They support the falsification principle, proposed by Karl Popper as fundamental in scientific research.

Types of Hypotheses in Research

When conducting research, it's crucial to understand the different types of hypotheses you might encounter. Each type serves a unique purpose and helps guide your study in specific ways. Knowing these types can enhance the clarity and focus of your research proposal .

Examples of Hypotheses

Simple hypothesis examples.

A simple hypothesis suggests a relationship between two variables: one independent and one dependent. For instance, "If students sleep for at least 8 hours, then their test scores will improve." This type of hypothesis is straightforward and easy to test.

Complex Hypothesis Examples

A complex hypothesis involves more than two variables. An example could be, "If students sleep for at least 8 hours and eat a healthy breakfast, then their test scores and overall well-being will improve." This type of hypothesis examines multiple factors and their combined effects.

Null and Alternative Hypothesis Examples

The null hypothesis states that there is no relationship between the variables. For example, "There is no difference in test scores between students who sleep for 8 hours and those who do not." The alternative hypothesis, on the other hand, suggests a relationship: "Students who sleep for 8 hours will have better test scores than those who do not."

Understanding these examples helps clarify how to structure your own hypotheses. Whether simple or complex, each type plays a crucial role in scientific research.

The Role of Variables in Hypothesis Formulation

When formulating a hypothesis, understanding the role of variables is crucial. Variables are the elements that you measure or manipulate in your research . They help you establish relationships and test your predictions effectively.

Testing Your Hypothesis

Designing experiments.

Designing an experiment is a crucial step in testing your hypothesis. A well-designed experiment ensures that you can accurately test your hypothesis and obtain reliable results. Start by defining your independent and dependent variables clearly. Make sure to control other factors that might influence the outcome. This is essential for maintaining the integrity of your experiment. You should also consider the ethical implications of your experiment to ensure it adheres to accepted standards.

Data Collection Methods

Once your experiment is designed, the next step is to collect data. Choose data collection methods that are appropriate for your research question and hypothesis. Common methods include surveys, observations, and experiments. Ensure that your data collection process is systematic and consistent to avoid any biases. Remember, the goal is to gather data that will either support or refute your hypothesis.

Analyzing Results

After collecting your data, the next step is to analyze the results. Use statistical methods to determine whether your data supports your hypothesis. This involves calculating the likelihood that your results are due to chance. If your data does not support your hypothesis, don't be discouraged. Unexpected findings can lead to new questions and further research. Always be open to conducting further experiments to validate and understand your findings.

Common Pitfalls in Hypothesis Formulation

When formulating a hypothesis, it's crucial to avoid common mistakes that can undermine your research. Here are some pitfalls to watch out for:

Overly Broad Hypotheses

One of the most frequent errors is creating a hypothesis that is too broad. A broad hypothesis can be difficult to test and may not provide meaningful results. Narrowing down your hypothesis to a specific aspect of your research question can make it more manageable and testable.

Lack of Testability

A hypothesis must be testable to be valid. If you can't design an experiment to test your hypothesis, it's not useful. Ensure that your hypothesis includes variables that can be measured and tested. This is essential for revolutionizing research: the secrets of effective experimental design .

Ignoring Alternative Explanations

Another common mistake is failing to consider other possible explanations for your observations. When you ignore alternative explanations, you risk missing out on important insights. Always evaluate assumptions, revise methodology, and consider alternative explanations to strengthen your hypothesis.

By being aware of these pitfalls, you can create a more robust and reliable hypothesis for your research.

Refining and Revising Hypotheses

When you conduct research, it’s common to find that your initial hypothesis may not hold true. This is a normal part of the scientific process. If your results do not support your original hypothesis, consider suggesting alternative options for future studies. This can help guide further research and improve understanding of the topic.

To ensure your hypothesis is strong, you can use a checklist to identify any weaknesses. Here are some questions to consider:

  • Is the hypothesis clear and specific?
  • Can it be tested through experiments?
  • Does it relate to the research question?

By answering these questions, you can refine your hypothesis and make it more robust. Additionally, incorporating feedback from peers can provide new insights and help you adjust your hypothesis based on new data.

In summary, refining and revising your hypothesis is essential for advancing your research. It allows you to adapt to new findings and improve the clarity and focus of your work. Remember, the goal is to develop a hypothesis that can lead to meaningful conclusions and further exploration in your field.

In the context of educational research, a recent meta-analysis highlights the importance of understanding the relationship between psychological needs and student well-being. This shows how refining hypotheses can lead to better insights into complex issues. Similarly, a grounded theory study emphasizes the need for thorough reviews to identify key issues in research, which can also inform hypothesis revision.

Case Studies of Hypothesis Formulation

One of the most famous historical examples of hypothesis formulation is Gregor Mendel's work on pea plants. Mendel's hypothesis about inheritance patterns laid the groundwork for modern genetics. He observed the traits of pea plants and formulated hypotheses about how these traits were passed down through generations. His work is a classic example of how careful observation and hypothesis testing can lead to significant scientific breakthroughs.

In contemporary research, hypothesis formulation continues to play a crucial role. For instance, in the field of psychology, researchers often develop hypotheses to understand human behavior. A recent study on the effects of social media on mental health formulated the hypothesis that increased social media use leads to higher levels of anxiety and depression. This hypothesis was tested through surveys and data analysis, providing valuable insights into the relationship between social media and mental health.

From both historical and contemporary examples, several lessons can be learned about effective hypothesis formulation:

  • Observation is key : Careful observation of phenomena is the first step in formulating a hypothesis.
  • Clarity and precision : A good hypothesis should be clear and precise, making it easier to test.
  • Testability: Ensure that your hypothesis can be tested through experiments or data analysis.
  • Flexibility: Be prepared to revise your hypothesis based on new data or feedback.

By understanding these lessons, you can improve your own hypothesis formulation process and contribute to the advancement of scientific knowledge.

In our "Case Studies of Hypothesis Formulation" section, we dive into real-world examples that show how to create strong hypotheses. These case studies are designed to help you understand the process and apply it to your own work. If you're looking for more detailed guidance, visit our website for step-by-step instructions and special offers. Don't miss out on the chance to improve your research skills!

Formulating a hypothesis is a fundamental step in the scientific method that helps guide research and experimentation. By gathering observations, evaluating potential causes, and developing testable statements, researchers can create hypotheses that are both meaningful and falsifiable. This process not only aids in understanding the problem at hand but also in predicting outcomes and drawing conclusions based on empirical evidence. Remember, a well-crafted hypothesis is clear, concise, and provides a direction for future research. With practice and careful consideration, anyone can learn to formulate effective hypotheses that contribute to scientific knowledge.

Frequently Asked Questions

What is a hypothesis.

A hypothesis is an educated guess about how things work. It's a statement that can be tested to see if it's true or false.

Why is a hypothesis important in scientific research?

A hypothesis helps guide your experiments and research. It gives you a clear focus and helps you understand what you're trying to find out.

What are the steps to formulate a good hypothesis?

To create a good hypothesis, start by gathering observations, look for patterns, and identify variables. Then, come up with possible explanations that you can test.

What makes a hypothesis testable?

A testable hypothesis is one that you can prove or disprove through experiments or observations. It should be clear and specific.

Can a hypothesis be proven true?

A hypothesis can be supported by evidence, but it can't be proven true beyond all doubt. New evidence might change our understanding.

What are independent and dependent variables?

Independent variables are the ones you change in an experiment. Dependent variables are the ones you measure to see if they change because of the independent variable.

What is a null hypothesis?

A null hypothesis states that there is no relationship between the variables being studied. It's often used as a starting point for testing.

How can I avoid common pitfalls in hypothesis formulation?

To avoid problems, make sure your hypothesis is specific, testable, and based on observations. Avoid making it too broad or ignoring other possible explanations.

Student using laptop for dissertation writing tools

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Student researching at a desk with books and laptop.

How to Research for Your Thesis Paper Without Feeling Overwhelmed

Collaborative Genius: 6 Hacks for Seamless Group Thesis Writing

Collaborative Genius: 6 Hacks for Seamless Group Thesis Writing

Understanding the Difference Between Research Objectives and Research Questions

Understanding the Difference Between Research Objectives and Research Questions

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

null hypothesis thesis example

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Null Hypothesis Definition and Examples

PM Images / Getty Images

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

In a scientific experiment, the null hypothesis is the proposition that there is no effect or no relationship between phenomena or populations. If the null hypothesis is true, any observed difference in phenomena or populations would be due to sampling error (random chance) or experimental error. The null hypothesis is useful because it can be tested and found to be false, which then implies that there is a relationship between the observed data. It may be easier to think of it as a nullifiable hypothesis or one that the researcher seeks to nullify. The null hypothesis is also known as the H 0, or no-difference hypothesis.

The alternate hypothesis, H A or H 1 , proposes that observations are influenced by a non-random factor. In an experiment, the alternate hypothesis suggests that the experimental or independent variable has an effect on the dependent variable .

How to State a Null Hypothesis

There are two ways to state a null hypothesis. One is to state it as a declarative sentence, and the other is to present it as a mathematical statement.

For example, say a researcher suspects that exercise is correlated to weight loss, assuming diet remains unchanged. The average length of time to achieve a certain amount of weight loss is six weeks when a person works out five times a week. The researcher wants to test whether weight loss takes longer to occur if the number of workouts is reduced to three times a week.

The first step to writing the null hypothesis is to find the (alternate) hypothesis. In a word problem like this, you're looking for what you expect to be the outcome of the experiment. In this case, the hypothesis is "I expect weight loss to take longer than six weeks."

This can be written mathematically as: H 1 : μ > 6

In this example, μ is the average.

Now, the null hypothesis is what you expect if this hypothesis does not happen. In this case, if weight loss isn't achieved in greater than six weeks, then it must occur at a time equal to or less than six weeks. This can be written mathematically as:

H 0 : μ ≤ 6

The other way to state the null hypothesis is to make no assumption about the outcome of the experiment. In this case, the null hypothesis is simply that the treatment or change will have no effect on the outcome of the experiment. For this example, it would be that reducing the number of workouts would not affect the time needed to achieve weight loss:

H 0 : μ = 6

Null Hypothesis Examples

"Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a null hypothesis.

Another example of a null hypothesis is "Plant growth rate is unaffected by the presence of cadmium in the soil ." A researcher could test the hypothesis by measuring the growth rate of plants grown in a medium lacking cadmium, compared with the growth rate of plants grown in mediums containing different amounts of cadmium. Disproving the null hypothesis would set the groundwork for further research into the effects of different concentrations of the element in soil.

Why Test a Null Hypothesis?

You may be wondering why you would want to test a hypothesis just to find it false. Why not just test an alternate hypothesis and find it true? The short answer is that it is part of the scientific method. In science, propositions are not explicitly "proven." Rather, science uses math to determine the probability that a statement is true or false. It turns out it's much easier to disprove a hypothesis than to positively prove one. Also, while the null hypothesis may be simply stated, there's a good chance the alternate hypothesis is incorrect.

For example, if your null hypothesis is that plant growth is unaffected by duration of sunlight, you could state the alternate hypothesis in several different ways. Some of these statements might be incorrect. You could say plants are harmed by more than 12 hours of sunlight or that plants need at least three hours of sunlight, etc. There are clear exceptions to those alternate hypotheses, so if you test the wrong plants, you could reach the wrong conclusion. The null hypothesis is a general statement that can be used to develop an alternate hypothesis, which may or may not be correct.

  • Kelvin Temperature Scale Definition
  • Independent Variable Definition and Examples
  • Theory Definition in Science
  • Hypothesis Definition (Science)
  • de Broglie Equation Definition
  • Law of Combining Volumes Definition
  • Chemical Definition
  • Pure Substance Definition in Chemistry
  • Acid Definition and Examples
  • Extensive Property Definition (Chemistry)
  • Radiation Definition and Examples
  • Valence Definition in Chemistry
  • Atomic Solid Definition
  • Weak Base Definition and Examples
  • Oxidation Definition and Example in Chemistry
  • Definition of Binary Compound

Examples

Null Hypothesis

Ai generator.

null hypothesis thesis example

Making a certain class or laboratory experiment would require a good null hypothesis . You will be given variables to be used in your experiment and then you would be able to identify the relationship between the two. Every beginning of the experiment report would indicate your hypotheses. It is proven useful for it can be tested to prove if the result is considered false.

What is a Null Hypothesis?

A null hypothesis is used during experiments to prove that there is no difference in the relationship between the two variables. Every type of experiment would require you to make a null hypothesis. From the word itself “null” means zero or no value. If you want to practice making a good experiment report , consider providing a good null hypothesis. Null hypothesis is designed to be rejected if the alternative hypothesis is proven to be exact.

Null Hypothesis Examples in Research

1. medical research.

  • Research Question: Does a new drug lower cholesterol levels more effectively than the current drug?
  • Null Hypothesis (H0): The new drug has no effect on cholesterol levels compared to the current drug.
  • Symbolic Form: H0: ?1 = ?2

2. Educational Research

  • Research Question: Does the use of interactive technology improve student test scores?
  • Null Hypothesis (H0): Interactive technology does not improve student test scores.

3. Business Research

  • Research Question: Does a new marketing strategy increase sales?
  • Null Hypothesis (H0): The new marketing strategy does not increase sales.

4. Psychological Research

  • Research Question: Does cognitive-behavioral therapy reduce symptoms of anxiety more than standard therapy?
  • Null Hypothesis (H0): Cognitive-behavioral therapy does not reduce anxiety symptoms more than standard therapy.

5. Environmental Research

  • Research Question: Does urbanization affect bird population diversity?
  • Null Hypothesis (H0): Urbanization has no effect on bird population diversity.
  • Symbolic Form: H0: ?urban = ?rural

6. Nutritional Research

  • Research Question: Does a low-carb diet lead to more weight loss than a low-fat diet?
  • Null Hypothesis (H0): A low-carb diet does not lead to more weight loss than a low-fat diet.

7. Economic Research

  • Research Question: Does increasing the minimum wage reduce poverty levels?
  • Null Hypothesis (H0): Increasing the minimum wage does not reduce poverty levels.
  • Symbolic Form: H0: ?before = ?after

8. Sociological Research

  • Research Question: Does social media usage affect teenagers’ self-esteem?
  • Null Hypothesis (H0): Social media usage does not affect teenagers’ self-esteem.
  • Symbolic Form: H0: ?users = ?non-users

9. Agricultural Research

  • Research Question: Does the use of a new fertilizer increase crop yield?
  • Null Hypothesis (H0): The new fertilizer does not increase crop yield.

10. Technological Research

  • Research Question: Does a new software algorithm improve processing speed?
  • Null Hypothesis (H0): The new software algorithm does not improve processing speed.
  • Symbolic Form: H0: ?new = ?old

Null Hypothesis Examples in Psychology

1. effectiveness of therapy.

  • Research Question: Does cognitive-behavioral therapy (CBT) reduce symptoms of depression more effectively than no treatment?
  • Null Hypothesis (H0): Cognitive-behavioral therapy does not reduce symptoms of depression more effectively than no treatment.
  • Symbolic Form: H0: ?CBT = ?control

2. Impact of Sleep on Memory

  • Research Question: Does sleep deprivation affect short-term memory performance?
  • Null Hypothesis (H0): Sleep deprivation has no effect on short-term memory performance.
  • Symbolic Form: H0: ?sleep_deprived = ?non_sleep_deprived

3. Influence of Color on Mood

  • Research Question: Does the color of a room affect individuals’ mood?
  • Null Hypothesis (H0): The color of a room does not affect individuals’ mood.
  • Symbolic Form: H0: ?color1 = ?color2 = ?color3

4. Social Media and Self-Esteem

  • Research Question: Does the frequency of social media use affect teenagers’ self-esteem?
  • Null Hypothesis (H0): The frequency of social media use does not affect teenagers’ self-esteem.
  • Symbolic Form: H0: ?high_use = ?low_use

5. Mindfulness and Stress Reduction

  • Research Question: Does mindfulness meditation reduce stress levels in college students?
  • Null Hypothesis (H0): Mindfulness meditation does not reduce stress levels in college students.
  • Symbolic Form: H0: ?mindfulness = ?control

6. Parenting Styles and Academic Performance

  • Research Question: Does authoritative parenting style affect children’s academic performance?
  • Null Hypothesis (H0): Authoritative parenting style does not affect children’s academic performance.
  • Symbolic Form: H0: ?authoritative = ?other_styles

7. Impact of Exercise on Anxiety

  • Research Question: Does regular exercise reduce anxiety levels in adults?
  • Null Hypothesis (H0): Regular exercise does not reduce anxiety levels in adults.
  • Symbolic Form: H0: ?exercise = ?no_exercise

8. Gender Differences in Risk-Taking Behavior

  • Research Question: Are there differences in risk-taking behavior between males and females?
  • Null Hypothesis (H0): There are no differences in risk-taking behavior between males and females.
  • Symbolic Form: H0: ?males = ?females

9. Impact of Music on Concentration

  • Research Question: Does listening to music while studying affect concentration levels?
  • Null Hypothesis (H0): Listening to music while studying does not affect concentration levels.
  • Symbolic Form: H0: ?music = ?no_music

10. Effect of Group Therapy on Social Skills

  • Research Question: Does group therapy improve social skills in individuals with social anxiety?
  • Null Hypothesis (H0): Group therapy does not improve social skills in individuals with social anxiety.
  • Symbolic Form: H0: ?group_therapy = ?no_therapy

Null Hypothesis Examples in Biology

1. effect of fertilizers on plant growth.

  • Research Question: Does a new fertilizer improve plant growth compared to no fertilizer?
  • Null Hypothesis (H0): The new fertilizer does not improve plant growth compared to no fertilizer.
  • Symbolic Form: H0: ?fertilizer = ?no_fertilizer

2. Antibiotic Effectiveness on Bacteria

  • Research Question: Does a new antibiotic reduce bacterial growth more effectively than an existing antibiotic?
  • Null Hypothesis (H0): The new antibiotic does not reduce bacterial growth more effectively than the existing antibiotic.
  • Symbolic Form: H0: ?new_antibiotic = ?existing_antibiotic

3. Impact of Temperature on Enzyme Activity

  • Research Question: Does temperature affect the activity of a specific enzyme?
  • Null Hypothesis (H0): Temperature does not affect the activity of the specific enzyme.
  • Symbolic Form: H0: Enzyme activity at temperature1 = Enzyme activity at temperature2

4. Genetic Influence on Trait Expression

  • Research Question: Does a specific gene affect the expression of a particular trait in a plant species?
  • Null Hypothesis (H0): The specific gene does not affect the expression of the particular trait in the plant species.
  • Symbolic Form: H0: Trait expression with gene = Trait expression without gene

5. Effect of Light Intensity on Photosynthesis

  • Research Question: Does light intensity affect the rate of photosynthesis in plants?
  • Null Hypothesis (H0): Light intensity does not affect the rate of photosynthesis in plants.
  • Symbolic Form: H0: Photosynthesis rate at light intensity1 = Photosynthesis rate at light intensity2

6. Impact of Diet on Animal Growth

  • Research Question: Does a high-protein diet affect the growth rate of animals?
  • Null Hypothesis (H0): A high-protein diet does not affect the growth rate of animals.
  • Symbolic Form: H0: Growth rate on high-protein diet = Growth rate on normal diet

7. Effect of Pollution on Aquatic Life

  • Research Question: Does water pollution affect the survival rate of fish in a lake?
  • Null Hypothesis (H0): Water pollution does not affect the survival rate of fish in a lake.
  • Symbolic Form: H0: Fish survival in polluted water = Fish survival in non-polluted water

8. Impact of Caffeine on Heart Rate in Daphnia

  • Research Question: Does caffeine affect the heart rate of Daphnia (water fleas)?
  • Null Hypothesis (H0): Caffeine does not affect the heart rate of Daphnia.
  • Symbolic Form: H0: Heart rate with caffeine = Heart rate without caffeine

9. Influence of Soil pH on Plant Germination

  • Research Question: Does soil pH affect the germination rate of seeds?
  • Null Hypothesis (H0): Soil pH does not affect the germination rate of seeds.
  • Symbolic Form: H0: Germination rate at pH1 = Germination rate at pH2

10. Effect of Salinity on Aquatic Plant Growth

  • Research Question: Does salinity affect the growth of aquatic plants?
  • Null Hypothesis (H0): Salinity does not affect the growth of aquatic plants.
  • Symbolic Form: H0: Plant growth in saline water = Plant growth in freshwater

Null Hypothesis Examples in Business

1. effect of marketing campaign on sales.

  • Research Question: Does a new marketing campaign increase product sales?
  • Null Hypothesis (H0): The new marketing campaign does not increase product sales.
  • Symbolic Form: H0: ?campaign = ?no_campaign

2. Impact of Training Programs on Employee Productivity

  • Research Question: Do training programs improve employee productivity?
  • Null Hypothesis (H0): Training programs do not improve employee productivity.
  • Symbolic Form: H0: ?trained = ?untrained

3. Influence of Price Changes on Demand

  • Research Question: Do price changes affect the demand for a product?
  • Null Hypothesis (H0): Price changes do not affect the demand for the product.
  • Symbolic Form: H0: ?price_change = ?no_price_change

4. Customer Satisfaction and Service Quality

  • Research Question: Does improving service quality increase customer satisfaction?
  • Null Hypothesis (H0): Improving service quality does not increase customer satisfaction.
  • Symbolic Form: H0: ?improved_service = ?standard_service

5. Effect of Employee Benefits on Retention Rates

  • Research Question: Do enhanced employee benefits reduce turnover rates?
  • Null Hypothesis (H0): Enhanced employee benefits do not reduce turnover rates.
  • Symbolic Form: H0: ?enhanced_benefits = ?standard_benefits

6. Impact of Social Media Presence on Brand Awareness

  • Research Question: Does an active social media presence increase brand awareness?
  • Null Hypothesis (H0): An active social media presence does not increase brand awareness.
  • Symbolic Form: H0: ?active_social_media = ?inactive_social_media

7. Influence of Store Layout on Customer Purchases

  • Research Question: Does store layout affect customer purchasing behavior?
  • Null Hypothesis (H0): Store layout does not affect customer purchasing behavior.
  • Symbolic Form: H0: ?layout1 = ?layout2

8. Online Advertising and Website Traffic

  • Research Question: Does online advertising increase website traffic?
  • Null Hypothesis (H0): Online advertising does not increase website traffic.
  • Symbolic Form: H0: ?ads = ?no_ads

9. Effect of Product Packaging on Sales

  • Research Question: Does new product packaging design increase sales?
  • Null Hypothesis (H0): The new product packaging design does not increase sales.
  • Symbolic Form: H0: ?new_packaging = ?old_packaging

10. Influence of Remote Work on Employee Performance

  • Research Question: Does remote work affect employee performance?
  • Null Hypothesis (H0): Remote work does not affect employee performance.
  • Symbolic Form: H0: ?remote_work = ?office_work

Null Hypothesis Examples in Statistics

1. comparing means.

  • Research Question: Is there a difference in average test scores between two groups of students?
  • Null Hypothesis (H0): There is no difference in the average test scores between the two groups.

2. Proportions

  • Research Question: Is the proportion of defective products the same in two different production lines?
  • Null Hypothesis (H0): The proportion of defective products is the same in both production lines.
  • Symbolic Form: H0: p1 = p2

3. Regression Analysis

  • Research Question: Is there a relationship between years of experience and salary?
  • Null Hypothesis (H0): There is no relationship between years of experience and salary.
  • Symbolic Form: H0: ? = 0 (where ? is the regression coefficient)

4. ANOVA (Analysis of Variance)

  • Research Question: Are the means of three or more groups equal?
  • Null Hypothesis (H0): The means of all groups are equal.
  • Symbolic Form: H0: ?1 = ?2 = ?3 = … = ?k

5. Chi-Square Test for Independence

  • Research Question: Are gender and voting preference independent?
  • Null Hypothesis (H0): Gender and voting preference are independent.
  • Symbolic Form: H0: There is no association between gender and voting preference.

6. Time Series Analysis

  • Research Question: Does a time series exhibit a trend over time?
  • Null Hypothesis (H0): There is no trend in the time series data over time.
  • Symbolic Form: H0: The time series has no significant trend component.

7. Hypothesis Testing for Variance

  • Research Question: Is the variance in test scores different between two classes?
  • Null Hypothesis (H0): The variances in test scores are equal between the two classes.
  • Symbolic Form: H0: ?1² = ?2²

8. Correlation Analysis

  • Research Question: Is there a correlation between two variables, such as height and weight?
  • Null Hypothesis (H0): There is no correlation between the two variables.
  • Symbolic Form: H0: ? = 0 (where ? is the correlation coefficient)

9. Two-Sample t-Test

  • Research Question: Do two samples have the same mean?
  • Null Hypothesis (H0): The two samples have the same mean.

10. One-Sample t-Test

  • Research Question: Does the sample mean differ from a known population mean?
  • Null Hypothesis (H0): The sample mean is equal to the population mean.
  • Symbolic Form: H0: ? = ?0

Real life Examples of Null Hypothesis

1. medical studies.

  • Research Question: Does a new medication lower blood pressure more effectively than the current medication?
  • Null Hypothesis (H0): The new medication does not lower blood pressure more effectively than the current medication.
  • Example: A clinical trial compares blood pressure readings between patients taking the new medication and those taking the current medication.

2. Education

  • Research Question: Does a new teaching method improve student test scores?
  • Null Hypothesis (H0): The new teaching method does not improve student test scores.
  • Example: An educational study compares test scores of students taught using the new method versus those taught using traditional methods.

3. Business

  • Research Question: Does a new advertising campaign increase product sales?
  • Null Hypothesis (H0): The new advertising campaign does not increase product sales.
  • Example: A company runs the new campaign and compares sales data before and after the campaign.

4. Public Health

  • Research Question: Does a smoking cessation program reduce the smoking rate in a community?
  • Null Hypothesis (H0): The smoking cessation program does not reduce the smoking rate in the community.
  • Example: Public health officials analyze smoking rates before and after implementing the program.

5. Environmental Science

  • Research Question: Does the introduction of a specific fish species affect the biodiversity of a lake?
  • Null Hypothesis (H0): The introduction of the specific fish species does not affect the biodiversity of the lake.
  • Example: Environmental scientists monitor biodiversity levels before and after introducing the fish species.

6. Economics

  • Research Question: Does raising the minimum wage reduce poverty levels?
  • Null Hypothesis (H0): Raising the minimum wage does not reduce poverty levels.
  • Example: Economists compare poverty rates in regions with and without recent minimum wage increases.

7. Psychology

  • Research Question: Does mindfulness meditation reduce stress levels among college students?
  • Null Hypothesis (H0): Mindfulness meditation does not reduce stress levels among college students.
  • Example: A study measures stress levels before and after a mindfulness meditation program in a group of students.

8. Agriculture

  • Example: Farmers apply the new fertilizer to one field and a standard fertilizer to another and compare the yields.

9. Technology

  • Research Question: Does a new software update improve the speed of a computer program?
  • Null Hypothesis (H0): The new software update does not improve the speed of the computer program.
  • Example: Software engineers measure the program’s speed before and after applying the update.

10. Marketing

  • Research Question: Does personalized email marketing increase customer engagement?
  • Null Hypothesis (H0): Personalized email marketing does not increase customer engagement.
  • Example: A company sends personalized emails to one group and generic emails to another, then compares engagement rates.

More Null Hypothesis Examples & Samples in PDF

1. null hypothesis significance test example.

Null Hypothesis Significance Test Example

2. Sample Null Hypothesis Example

Sample Null Hypothesis Example

3. Critical Assessment of Null Hypothesis Example

Critical Assessment of Null Hypothesis Example

4. Confidence Levels for Null Hypotheses Example

Confidence Levels for Null Hypotheses Example

5. Interpreting Failure to Reject A Null Hypothesis Example

Interpreting Failure to Reject A Null Hypothesis

6. Simple Null Hypothesis Example

Simple Null Hypothesis Example

7. Basic Neurology Null Hypothesis Example

Basic Neurology Null Hypothesis Example

8. Null Research Hypothesis in DOC

Null Research Hypothesis in DOC

Purpose of Null Hypothesis

The null hypothesis is a fundamental concept in statistics and scientific research . It serves several critical purposes in the process of hypothesis testing, guiding researchers in drawing meaningful conclusions from their data. Below are the primary purposes of the null hypothesis:

1. Baseline for Comparison

The null hypothesis provides a baseline or a default position that indicates no effect, no difference, or no relationship between variables. It is the statement that researchers aim to test against an alternative hypothesis. By starting with the assumption that there is no effect, researchers can objectively assess whether the data provide enough evidence to support the alternative hypothesis.

2. Eliminates Bias

By assuming no effect or no difference, the null hypothesis helps eliminate bias in research. Researchers approach their study without preconceived notions about the outcome, ensuring that the results are based on the data collected rather than personal beliefs or expectations.

3. Framework for Statistical Testing

The null hypothesis provides a structured framework for conducting statistical tests. It is essential for calculating p-values and test statistics, which determine whether the observed data are significantly different from what would be expected under the null hypothesis. This framework allows for a standardized approach to testing hypotheses across various fields of study.

4. Facilitates Decision Making

The null hypothesis facilitates decision-making in research by providing clear criteria for accepting or rejecting it. If the data provide sufficient evidence to reject the null hypothesis, researchers can conclude that there is a statistically significant effect or difference. This decision-making process is critical in advancing scientific knowledge and understanding.

5. Controls Type I and Type II Errors

The null hypothesis plays a crucial role in controlling Type I and Type II errors in hypothesis testing. A Type I error occurs when the null hypothesis is incorrectly rejected (a false positive), while a Type II error happens when the null hypothesis is incorrectly accepted (a false negative). By defining the null hypothesis, researchers can set significance levels (e.g., alpha level) to manage the risk of these errors.

When is the Null Hypothesis Rejected?

Rejecting the null hypothesis is a critical step in the process of hypothesis testing. The decision to reject the null hypothesis is based on statistical evidence derived from the data collected in a study. Below are the key factors that determine when the null hypothesis is rejected:

The p-value is a measure of the probability that the observed data (or something more extreme) would occur if the null hypothesis were true. The null hypothesis is rejected if the p-value is less than or equal to the predetermined significance level (?).

  • Significance Level (?): This is the threshold set by the researcher, commonly 0.05 (5%). If the p-value ? 0.05, the null hypothesis is rejected.
  • If a p-value of 0.03 is obtained and the significance level is 0.05, the null hypothesis is rejected.

2. Test Statistic

The test statistic is a standardized value calculated from sample data during a hypothesis test. It measures the degree to which the sample data differ from the null hypothesis. The decision to reject the null hypothesis depends on whether the test statistic falls within the critical region.

  • Critical Region: This is determined by the significance level and the distribution of the test statistic (e.g., Z-distribution, t-distribution).
  • In a two-tailed test with ? = 0.05, the critical region for a Z-test might be Z < -1.96 or Z > 1.96. If the test statistic is 2.10, the null hypothesis is rejected.

3. Confidence Intervals

Confidence intervals provide a range of values that are likely to contain the population parameter. If the confidence interval does not include the value specified by the null hypothesis, the null hypothesis is rejected.

  • If a 95% confidence interval for the mean difference between two groups is (2.5, 5.0) and the null hypothesis states that the mean difference is 0, the null hypothesis is rejected.

4. Effect Size

Effect size measures the magnitude of the difference between groups or the strength of a relationship between variables. While not a direct criterion for rejecting the null hypothesis, a substantial effect size can support the decision to reject the null hypothesis when combined with a significant p-value.

Null Hypothesis vs. Alternative Hypothesis

Null Hypothesis vs. Alternative Hypothesis

A statement that there is no effect or difference.A statement that there is an effect or difference.
Serves as a baseline or default position.Represents the outcome the researcher aims to support.
Assumes no relationship or effect.Assumes a relationship or effect exists.
“The new drug has no effect on blood pressure.”“The new drug lowers blood pressure.”
Retained if the p-value is greater than the significance level (?).Accepted if the p-value is less than or equal to the significance level (?).
Falls outside the critical region, indicating no significant effect.Falls within the critical region, indicating a significant effect.
Denoted by H0.Denoted by H1 or Ha.
Focuses on the absence of a significant effect or relationship.Focuses on the presence of a significant effect or relationship.
Incorrectly rejecting a true null hypothesis (false positive).N/A
N/AIncorrectly accepting a false null hypothesis (false negative).

How to Write a Null Hypothesis

Writing a null hypothesis is a crucial step in designing a scientific study or experiment. The null hypothesis (H0) serves as a starting point for statistical testing and represents a statement of no effect or no difference. Here’s a step-by-step guide on how to write a null hypothesis:

1. Identify the Research Question

Start by clearly defining the research question you want to investigate. Understand what you are testing and what you expect to find.

  • Example Research Question: Does a new medication reduce blood pressure more effectively than an existing medication?

2. Determine the Variables

Identify the independent and dependent variables in your study.

  • Independent Variable: The variable that is manipulated or categorized (e.g., type of medication).
  • Dependent Variable: The variable that is measured or observed (e.g., blood pressure).

3. State the Null Hypothesis Clearly

The null hypothesis should assert that there is no effect, no difference, or no relationship between the variables. It is usually written as a statement of equality or no change.

  • Format: “There is no [effect/difference/relationship] in [dependent variable] between [independent variable groups].”
  • Example: “There is no difference in blood pressure reduction between the new medication and the existing medication.”

4. Use Proper Symbols and Notation

In formal scientific writing, use symbols and proper notation to represent the null hypothesis.

  • Here, ?1 represents the mean blood pressure reduction for the new medication, and ?2 represents the mean blood pressure reduction for the existing medication.

Why is the null hypothesis important?

The null hypothesis is crucial as it provides a baseline for comparison and allows researchers to test the significance of their findings.

How do you state a null hypothesis?

A null hypothesis is stated as no effect or no difference, typically in the form “There is no [effect/difference] between [groups/variables].”

What is the alternative hypothesis?

The alternative hypothesis (H1) suggests that there is an effect or difference between variables, opposing the null hypothesis.

What does it mean to reject the null hypothesis?

Rejecting the null hypothesis means the data provides sufficient evidence to support the alternative hypothesis, indicating a significant effect or difference.

What is a p-value?

A p-value measures the probability that the observed data would occur if the null hypothesis were true. Low p-values indicate strong evidence against the null hypothesis.

What is a Type I error?

A Type I error occurs when the null hypothesis is incorrectly rejected, meaning a false positive result is concluded.

What is a Type II error?

A Type II error happens when the null hypothesis is incorrectly accepted, meaning a false negative result is concluded.

How do you choose a significance level (?)?

The significance level, often set at 0.05, is chosen based on the acceptable risk of making a Type I error in the context of the study.

Can the null hypothesis be proven true?

No, the null hypothesis can only be rejected or not rejected. Failing to reject it does not prove it true, only that there is not enough evidence against it.

What is the role of sample size in hypothesis testing?

Larger sample sizes increase the test’s power, reducing the risk of Type II errors and making it easier to detect a true effect.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

10.1 - setting the hypotheses: examples.

A significance test examines whether the null hypothesis provides a plausible explanation of the data. The null hypothesis itself does not involve the data. It is a statement about a parameter (a numerical characteristic of the population). These population values might be proportions or means or differences between means or proportions or correlations or odds ratios or any other numerical summary of the population. The alternative hypothesis is typically the research hypothesis of interest. Here are some examples.

Example 10.2: Hypotheses with One Sample of One Categorical Variable Section  

About 10% of the human population is left-handed. Suppose a researcher at Penn State speculates that students in the College of Arts and Architecture are more likely to be left-handed than people found in the general population. We only have one sample since we will be comparing a population proportion based on a sample value to a known population value.

  • Research Question : Are artists more likely to be left-handed than people found in the general population?
  • Response Variable : Classification of the student as either right-handed or left-handed

State Null and Alternative Hypotheses

  • Null Hypothesis : Students in the College of Arts and Architecture are no more likely to be left-handed than people in the general population (population percent of left-handed students in the College of Art and Architecture = 10% or p = .10).
  • Alternative Hypothesis : Students in the College of Arts and Architecture are more likely to be left-handed than people in the general population (population percent of left-handed students in the College of Arts and Architecture > 10% or p > .10). This is a one-sided alternative hypothesis.

Example 10.3: Hypotheses with One Sample of One Measurement Variable Section  

 two Diphenhydramine pills

A generic brand of the anti-histamine Diphenhydramine markets a capsule with a 50 milligram dose. The manufacturer is worried that the machine that fills the capsules has come out of calibration and is no longer creating capsules with the appropriate dosage.

  • Research Question : Does the data suggest that the population mean dosage of this brand is different than 50 mg?
  • Response Variable : dosage of the active ingredient found by a chemical assay.
  • Null Hypothesis : On the average, the dosage sold under this brand is 50 mg (population mean dosage = 50 mg).
  • Alternative Hypothesis : On the average, the dosage sold under this brand is not 50 mg (population mean dosage ≠ 50 mg). This is a two-sided alternative hypothesis.

Example 10.4: Hypotheses with Two Samples of One Categorical Variable Section  

vegetarian airline meal

Many people are starting to prefer vegetarian meals on a regular basis. Specifically, a researcher believes that females are more likely than males to eat vegetarian meals on a regular basis.

  • Research Question : Does the data suggest that females are more likely than males to eat vegetarian meals on a regular basis?
  • Response Variable : Classification of whether or not a person eats vegetarian meals on a regular basis
  • Explanatory (Grouping) Variable: Sex
  • Null Hypothesis : There is no sex effect regarding those who eat vegetarian meals on a regular basis (population percent of females who eat vegetarian meals on a regular basis = population percent of males who eat vegetarian meals on a regular basis or p females = p males ).
  • Alternative Hypothesis : Females are more likely than males to eat vegetarian meals on a regular basis (population percent of females who eat vegetarian meals on a regular basis > population percent of males who eat vegetarian meals on a regular basis or p females > p males ). This is a one-sided alternative hypothesis.

Example 10.5: Hypotheses with Two Samples of One Measurement Variable Section  

low carb meal

Obesity is a major health problem today. Research is starting to show that people may be able to lose more weight on a low carbohydrate diet than on a low fat diet.

  • Research Question : Does the data suggest that, on the average, people are able to lose more weight on a low carbohydrate diet than on a low fat diet?
  • Response Variable : Weight loss (pounds)
  • Explanatory (Grouping) Variable : Type of diet
  • Null Hypothesis : There is no difference in the mean amount of weight loss when comparing a low carbohydrate diet with a low fat diet (population mean weight loss on a low carbohydrate diet = population mean weight loss on a low fat diet).
  • Alternative Hypothesis : The mean weight loss should be greater for those on a low carbohydrate diet when compared with those on a low fat diet (population mean weight loss on a low carbohydrate diet > population mean weight loss on a low fat diet). This is a one-sided alternative hypothesis.

Example 10.6: Hypotheses about the relationship between Two Categorical Variables Section  

  • Research Question : Do the odds of having a stroke increase if you inhale second hand smoke ? A case-control study of non-smoking stroke patients and controls of the same age and occupation are asked if someone in their household smokes.
  • Variables : There are two different categorical variables (Stroke patient vs control and whether the subject lives in the same household as a smoker). Living with a smoker (or not) is the natural explanatory variable and having a stroke (or not) is the natural response variable in this situation.
  • Null Hypothesis : There is no relationship between whether or not a person has a stroke and whether or not a person lives with a smoker (odds ratio between stroke and second-hand smoke situation is = 1).
  • Alternative Hypothesis : There is a relationship between whether or not a person has a stroke and whether or not a person lives with a smoker (odds ratio between stroke and second-hand smoke situation is > 1). This is a one-tailed alternative.

This research question might also be addressed like example 11.4 by making the hypotheses about comparing the proportion of stroke patients that live with smokers to the proportion of controls that live with smokers.

Example 10.7: Hypotheses about the relationship between Two Measurement Variables Section  

  • Research Question : A financial analyst believes there might be a positive association between the change in a stock's price and the amount of the stock purchased by non-management employees the previous day (stock trading by management being under "insider-trading" regulatory restrictions).
  • Variables : Daily price change information (the response variable) and previous day stock purchases by non-management employees (explanatory variable). These are two different measurement variables.
  • Null Hypothesis : The correlation between the daily stock price change (\$) and the daily stock purchases by non-management employees (\$) = 0.
  • Alternative Hypothesis : The correlation between the daily stock price change (\$) and the daily stock purchases by non-management employees (\$) > 0. This is a one-sided alternative hypothesis.

Example 10.8: Hypotheses about comparing the relationship between Two Measurement Variables in Two Samples Section  

Calculation of a person's approximate tip for their meal

  • Research Question : Is there a linear relationship between the amount of the bill (\$) at a restaurant and the tip (\$) that was left. Is the strength of this association different for family restaurants than for fine dining restaurants?
  • Variables : There are two different measurement variables. The size of the tip would depend on the size of the bill so the amount of the bill would be the explanatory variable and the size of the tip would be the response variable.
  • Null Hypothesis : The correlation between the amount of the bill (\$) at a restaurant and the tip (\$) that was left is the same at family restaurants as it is at fine dining restaurants.
  • Alternative Hypothesis : The correlation between the amount of the bill (\$) at a restaurant and the tip (\$) that was left is the difference at family restaurants then it is at fine dining restaurants. This is a two-sided alternative hypothesis.

Module 9: Hypothesis Testing With One Sample

Null and alternative hypotheses, learning outcomes.

  • Describe hypothesis testing in general and in practice

The actual test begins by considering two  hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis : It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make adecision. There are two options for a  decision . They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in  H 0 and H a :

equal (=) not equal (≠)
greater than (>) less than (<)
greater than or equal to (≥) less than (<)
less than or equal to (≤) more than (>)

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 66 H a : μ __ 66

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 45 H a : μ __ 45

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : p __ 0.40 H a : p __ 0.40

  • H 0 : p = 0.40
  • H a : p > 0.40

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis , typically denoted with H 0 . The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis , typically denoted with H a or H 1 , using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

H 0 and H a are contradictory.

  • OpenStax, Statistics, Null and Alternative Hypotheses. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:58/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by : Khan Academy. Located at : https://youtu.be/5D1gV37bKXY . License : All Rights Reserved . License Terms : Standard YouTube License

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

equal (=) not equal (≠) greater than (>) less than (<)
greater than or equal to (≥) less than (<)
less than or equal to (≤) more than (>)

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Apr 16, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Translators
  • Graphic Designers

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

How to Write About Negative (Or Null) Results in Academic Research

ScienceEditor

Researchers are often disappointed when their work yields "negative" results, meaning that the null hypothesis cannot be rejected. However, negative results are essential for research to progress. Negative results tell researchers that they are on the wrong path, or that their current techniques are ineffective. This is a natural and necessary part of discovering something that was previously unknown. Solving problems that lead to negative results is an integral part of being an effective researcher. Publishing negative results that are the result of rigorous research contributes to scientific progress.

There are three main reasons for negative results:

  • The original hypothesis was incorrect
  • The findings of a published report cannot be replicated
  • Technical problems

Here, we will discuss how to write about negative results, first focusing on the most common reason: technical problems.

Writing about technical problems

Technical problems might include faulty reagents, inappropriate study design, and insufficient statistical power. Most researchers would prefer to resolve technical problems before presenting their work, and focus instead on their convincing results. In reality, researchers often need to present their work at a conference or to a thesis committee before some problems can be resolved.

When presenting at a conference, the objective should be to clearly describe your overall research goal and why it is important, your preliminary results, the current problem, and how previously published work is informing the steps you are taking to resolve the problem. Here, you want to take advantage of the collective expertise at the conference. By being straightforward about your difficulties, you increase the chance that someone can help you find a solution.

When presenting to a thesis committee, much of what you discuss will be the same (overall research goal and why it is important, results, problem(s) and possible solutions). Your primarily goal is to show that you are well prepared to move forward in your research career, despite the recent difficulties. The thesis defense is a defined stopping point, so most thesis students should write about solutions they would pursue if they were to continue the work. For example, "To resolve this problem, it would be advisable to increase the survey area by a factor of 4, and then…" In contrast, researchers who will be continuing their work should write about possible solutions using present and future tense. For example, "To resolve this problem, we are currently testing a wider variety of standards, and will then conduct preliminary experiments to determine…"

Putting the "re" in "research"

Whether you are presenting at a conference, defending a thesis, applying for funding, or simply trying to make progress in your research, you will often need to search through the academic literature to determine the best path forward. This is especially true when you get unexpected results—either positive or negative. When trying to resolve a technical problem, you should often find yourself carefully reading the materials and methods sections of papers that address similar research questions, or that used similar techniques to explore very different problems. For example, a single computer algorithm might be adapted to address research questions in many different fields.

In searching through published papers and less formal methods of communication—such as conference abstracts—you may come to appreciate the important details that good researchers will include when discussing technical problems or other negative results. For example, "We found that participants were more likely to complete the process when light refreshments were provided between the two sessions." By including this information, the authors may help other researchers save time and resources.

Thus, you are advised to be as thorough as possible in reviewing the relevant literature, to find the most promising solutions for technical problems. When presenting your work, show that you have carefully considered the possibilities, and have developed a realistic plan for moving forward. This will help a thesis committee view your efforts favorably, and can also convince possible collaborators or advisors to invest time in helping you.

Publishing negative results

Negative results due to technical problems may be acceptable for a conference presentation or a thesis at the undergraduate or master's degree level. Negative results due to technical problems are not sufficient for publication, a Ph.D. dissertation, or tenure. In those situations, you will need to resolve the technical problem and generate high quality results (either positive or negative) that stand up to rigorous analysis. Depending on the research field, high quality negative results might include multiple readouts and narrow confidence intervals.

Researchers are often reluctant to publish negative results, especially if their data don't support an interesting alternative hypothesis. Traditionally, journals have been reluctant to publish negative results that are not paired with positive results, even if the study is well designed and the results have sufficient statistical power. This is starting to change— especially for medical research —but publishing negative results can still be an uphill battle.

Not publishing high quality negative results is a disservice to the scientific community and the people who support it (including tax payers), since other scientists may need to repeat the work. For studies involving animal research or human tissue samples, not publishing would squander significant sacrifices. For research involving medical treatments—especially studies that contradict a published report—not publishing negative results leads to an inaccurate understanding of treatment efficacy.

So how can researchers write about negative results in a way that reflects its importance? Let's consider a common reason for negative results: the original hypothesis was incorrect.

Writing about negative results when the original hypothesis was incorrect

Researchers should be comfortable with being wrong some of the time, such as when results don't support an initial hypothesis. After all, research wouldn't be necessary if we already knew the answer to every possible question. The next step is usually to revise the hypothesis after reconsidering the available data, reading through the relevant literature, and consulting with colleagues.

Ideally, a revised hypothesis will lead to results that allow you to reject a (revised) null hypothesis. The negative results can then be reported alongside the positive results, possibly bolstering the significance of both. For example, "The DNA mutations in region A had a significant effect on gene expression, while the mutations outside of domain A had no effect. Don't forget to include important details about how you overcame technical problems, so that other researchers don't need to reinvent the wheel.

Unfortunately, it isn't always possible to pair negative results with related positive results. For example, imagine a year-long study on the effect of COVID-19 shelter-in-place orders on the mental health of avid video game players compared to people who don't play video games. Despite using well-established tools for measuring mental health, having a large sample size, and comparing multiple subpopulations (e.g. gamers who live alone vs. gamers who live with others), no significant differences were identified. There is no way to modify and repeat this study because the same shelter-in-place conditions no longer exist. So how can this research be presented effectively?

Writing when you only have negative results

When you write a scientific paper to report negative results, the sections will be the same as for any other paper: Introduction, Materials and Methods, Results and Discussion. In the introduction, you should prepare your reader for the possibility of negative results. You can highlight gaps or inconsistencies in past research, and point to data that could indicate an incomplete understanding of the situation.

In the example about video game players, you might highlight data showing that gamers are statistically very similar to large chunks of the population in terms of age, education, marital status, etc. You might discuss how the stigma associated with playing video games might be unfair and harmful to people in certain situations. You could discuss research showing the benefits of playing video games, and contrast gaming with engaging in social media, which is another modern hobby. Putting a positive spin on negative results can make the difference between a published manuscript and rejection.

In a paper that focuses on negative results—especially one that contradicts published findings—the research design and data analysis must be impeccable. You may need to collaborate with other researchers to ensure that your methods are sound, and apply multiple methods of data analysis.

As long as the research is rigorous, negative results should be used to inform and guide future experiments. This is how science improves our understanding of the world.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Chi-Square (Χ²) Tests | Types, Formula & Examples

Chi-Square (Χ²) Tests | Types, Formula & Examples

Published on May 23, 2022 by Shaun Turney . Revised on June 22, 2023.

A Pearson’s chi-square test is a statistical test for categorical data. It is used to determine whether your data are significantly different from what you expected. There are two types of Pearson’s chi-square tests:

  • The chi-square goodness of fit test is used to test whether the frequency distribution of a categorical variable is different from your expectations.
  • The chi-square test of independence is used to test whether two categorical variables are related to each other.

Table of contents

What is a chi-square test, the chi-square formula, when to use a chi-square test, types of chi-square tests, how to perform a chi-square test, how to report a chi-square test, practice questions, other interesting articles, frequently asked questions about chi-square tests.

Pearson’s chi-square (Χ 2 ) tests, often referred to simply as chi-square tests, are among the most common nonparametric tests . Nonparametric tests are used for data that don’t follow the assumptions of parametric tests , especially the assumption of a normal distribution .

If you want to test a hypothesis about the distribution of a categorical variable you’ll need to use a chi-square test or another nonparametric test. Categorical variables can be nominal or ordinal and represent groupings such as species or nationalities. Because they can only have a few specific values, they can’t have a normal distribution.

Test hypotheses about frequency distributions

There are two types of Pearson’s chi-square tests, but they both test whether the observed frequency distribution of a categorical variable is significantly different from its expected frequency distribution. A frequency distribution describes how observations are distributed between different groups.

Frequency distributions are often displayed using frequency distribution tables . A frequency distribution table shows the number of observations in each group. When there are two categorical variables, you can use a specific type of frequency distribution table called a contingency table to show the number of observations in each combination of groups.

Frequency of visits by bird species at a bird feeder during a 24-hour period
Bird species Frequency
House sparrow 15
House finch 12
Black-capped chickadee 9
Common grackle 8
European starling 8
Mourning dove 6
Contingency table of the handedness of a sample of Americans and Canadians
Right-handed Left-handed
American 236 19
Canadian 157 16

Prevent plagiarism. Run a free check.

Both of Pearson’s chi-square tests use the same formula to calculate the test statistic , chi-square (Χ 2 ):

\begin{equation*} X^2=\sum{\frac{(O-E)^2}{E}} \end{equation*}

  • Χ 2 is the chi-square test statistic
  • Σ is the summation operator (it means “take the sum of”)
  • O is the observed frequency
  • E is the expected frequency

The larger the difference between the observations and the expectations ( O − E in the equation), the bigger the chi-square will be. To decide whether the difference is big enough to be statistically significant , you compare the chi-square value to a critical value.

A Pearson’s chi-square test may be an appropriate option for your data if all of the following are true:

  • You want to test a hypothesis about one or more categorical variables . If one or more of your variables is quantitative, you should use a different statistical test . Alternatively, you could convert the quantitative variable into a categorical variable by separating the observations into intervals.
  • The sample was randomly selected from the population .
  • There are a minimum of five observations expected in each group or combination of groups.

The two types of Pearson’s chi-square tests are:

Chi-square goodness of fit test

Chi-square test of independence.

Mathematically, these are actually the same test. However, we often think of them as different tests because they’re used for different purposes.

You can use a chi-square goodness of fit test when you have one categorical variable. It allows you to test whether the frequency distribution of the categorical variable is significantly different from your expectations. Often, but not always, the expectation is that the categories will have equal proportions.

  • Null hypothesis ( H 0 ): The bird species visit the bird feeder in equal proportions.
  • Alternative hypothesis ( H A ): The bird species visit the bird feeder in different proportions.

Expectation of different proportions

  • Null hypothesis ( H 0 ): The bird species visit the bird feeder in the same proportions as the average over the past five years.
  • Alternative hypothesis ( H A ): The bird species visit the bird feeder in different proportions from the average over the past five years.

You can use a chi-square test of independence when you have two categorical variables. It allows you to test whether the two variables are related to each other. If two variables are independent (unrelated), the probability of belonging to a certain group of one variable isn’t affected by the other variable .

  • Null hypothesis ( H 0 ): The proportion of people who are left-handed is the same for Americans and Canadians.
  • Alternative hypothesis ( H A ): The proportion of people who are left-handed differs between nationalities.

Other types of chi-square tests

Some consider the chi-square test of homogeneity to be another variety of Pearson’s chi-square test. It tests whether two populations come from the same distribution by determining whether the two populations have the same proportions as each other. You can consider it simply a different way of thinking about the chi-square test of independence.

McNemar’s test is a test that uses the chi-square test statistic. It isn’t a variety of Pearson’s chi-square test, but it’s closely related. You can conduct this test when you have a related pair of categorical variables that each have two groups. It allows you to determine whether the proportions of the variables are equal.

Contingency table of ice cream flavor preference
Like chocolate Dislike chocolate
Like vanilla 47 32
Dislike vanilla 8 13
  • Null hypothesis ( H 0 ): The proportion of people who like chocolate is the same as the proportion of people who like vanilla.
  • Alternative hypothesis ( H A ): The proportion of people who like chocolate is different from the proportion of people who like vanilla.

There are several other types of chi-square tests that are not Pearson’s chi-square tests, including the test of a single variance and the likelihood ratio chi-square test .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

null hypothesis thesis example

The exact procedure for performing a Pearson’s chi-square test depends on which test you’re using, but it generally follows these steps:

  • Create a table of the observed and expected frequencies. This can sometimes be the most difficult step because you will need to carefully consider which expected values are most appropriate for your null hypothesis.
  • Calculate the chi-square value from your observed and expected frequencies using the chi-square formula.
  • Find the critical chi-square value in a chi-square critical value table or using statistical software.
  • Compare the chi-square value to the critical value to determine which is larger.
  • Decide whether to reject the null hypothesis. You should reject the null hypothesis if the chi-square value is greater than the critical value. If you reject the null hypothesis, you can conclude that your data are significantly different from what you expected.

If you decide to include a Pearson’s chi-square test in your research paper , dissertation or thesis , you should report it in your results section . You can follow these rules if you want to report statistics in APA Style :

  • You don’t need to provide a reference or formula since the chi-square test is a commonly used statistic.
  • Refer to chi-square using its Greek symbol, Χ 2 . Although the symbol looks very similar to an “X” from the Latin alphabet, it’s actually a different symbol. Greek symbols should not be italicized.
  • Include a space on either side of the equal sign.
  • If your chi-square is less than zero, you should include a leading zero (a zero before the decimal point) since the chi-square can be greater than zero.
  • Provide two significant digits after the decimal point.
  • Report the chi-square alongside its degrees of freedom , sample size, and p value , following this format: Χ 2 (degrees of freedom, N = sample size) = chi-square value, p = p value).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis

Methodology

  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

The two main chi-square tests are the chi-square goodness of fit test and the chi-square test of independence .

Both chi-square tests and t tests can test for differences between two groups. However, a t test is used when you have a dependent quantitative variable and an independent categorical variable (with two groups). A chi-square test of independence is used when you have two categorical variables.

Both correlations and chi-square tests can test for relationships between two variables. However, a correlation is used when you have two quantitative variables and a chi-square test of independence is used when you have two categorical variables.

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2023, June 22). Chi-Square (Χ²) Tests | Types, Formula & Examples. Scribbr. Retrieved September 22, 2024, from https://www.scribbr.com/statistics/chi-square-tests/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, chi-square test of independence | formula, guide & examples, chi-square goodness of fit test | formula, guide & examples, chi-square (χ²) distributions | definition & examples, what is your plagiarism score.

IMAGES

  1. Null Hypothesis

    null hypothesis thesis example

  2. Null Thesis Statement

    null hypothesis thesis example

  3. 10 Easy Steps to Find Null Hypothesis in Research Articles

    null hypothesis thesis example

  4. Null Hypothesis

    null hypothesis thesis example

  5. Null And Research Hypothesis Examples /

    null hypothesis thesis example

  6. How to Write a Null Hypothesis (with Examples and Templates)

    null hypothesis thesis example

VIDEO

  1. Hypothesis Testing: the null and alternative hypotheses

  2. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  3. Null and Alternative Hypothesis

  4. Misunderstanding The Null Hypothesis

  5. Hypothesis Formulation

  6. Hypothesis Hack : Leveraging Your Thesis with DATAtab

COMMENTS

  1. How to Write a Null Hypothesis (5 Examples)

    H 0 (Null Hypothesis): Population parameter =, ≤, ≥ some value. H A (Alternative Hypothesis): Population parameter <, >, ≠ some value. Note that the null hypothesis always contains the equal sign. We interpret the hypotheses as follows: Null hypothesis: The sample data provides no evidence to support some claim being made by an individual.

  2. Null & Alternative Hypotheses

    The null hypothesis (H0) answers "No, there's no effect in the population.". The alternative hypothesis (Ha) answers "Yes, there is an effect in the population.". The null and alternative are always claims about the population. That's because the goal of hypothesis testing is to make inferences about a population based on a sample.

  3. How to Formulate a Null Hypothesis (With Examples)

    To distinguish it from other hypotheses, the null hypothesis is written as H 0 (which is read as "H-nought," "H-null," or "H-zero"). A significance test is used to determine the likelihood that the results supporting the null hypothesis are not due to chance. A confidence level of 95% or 99% is common. Keep in mind, even if the confidence level is high, there is still a small chance the ...

  4. Crafting a Null Hypothesis: A Guide to Writing it Right

    The null hypothesis is a statement that assumes there is no significant effect or relationship between the variables being studied. It represents the status quo or the assumption of no effect until proven otherwise. It's the hypothesis that researchers typically aim to test against and is denoted as H0.

  5. Null and Alternative Hypotheses

    The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test: Null hypothesis (H0): There's no effect in the population. Alternative hypothesis (HA): There's an effect in the population. The effect is usually the effect of the independent variable on the dependent ...

  6. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  7. Null Hypothesis: Definition, Rejecting & Examples

    When your sample contains sufficient evidence, you can reject the null and conclude that the effect is statistically significant. Statisticians often denote the null hypothesis as H 0 or H A.. Null Hypothesis H 0: No effect exists in the population.; Alternative Hypothesis H A: The effect exists in the population.; In every study or experiment, researchers assess an effect or relationship.

  8. Formulating a Null Hypothesis: Key Elements to Consider

    A null hypothesis (H0) is a statement that there is no effect or no difference, and it serves as the starting point for statistical testing. Formulating a null hypothesis involves defining a clear and concise research question, stating the hypothesis in a way that allows for empirical testing, and considering the potential for Type I errors.

  9. How to Write a Null Hypothesis (with Examples and Templates)

    Write a statistical null hypothesis as a mathematical equation, such as. μ 1 = μ 2 {\displaystyle \mu _ {1}=\mu _ {2}} if you're comparing group means. Adjust the format of your null hypothesis to match the statistical method you used to test it, such as using "mean" if you're comparing the mean between 2 groups.

  10. How to Formulate a Hypothesis: Example and Explanation

    Complex Hypothesis Examples. A complex hypothesis involves more than two variables. An example could be, "If students sleep for at least 8 hours and eat a healthy breakfast, then their test scores and overall well-being will improve." This type of hypothesis examines multiple factors and their combined effects.

  11. Hypothesis Testing

    Step 5: Present your findings. The results of hypothesis testing will be presented in the results and discussion sections of your research paper, dissertation or thesis.. In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p-value).

  12. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  13. Null Thesis Statement

    Example Null Hypothesis: Daily consumption of green tea has no effect on weight loss. 4. Ensure the Statement is Testable: The null hypothesis should be clear and specific enough that it can be tested using scientific methods. 5. Avoid Words of Judgement: Words like "good", "better", or "improves" are subjective and can be ambiguous ...

  14. Null Hypothesis Definition and Examples

    Null Hypothesis Examples. "Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a ...

  15. Null Hypothesis

    Below are the primary purposes of the null hypothesis: 1. Baseline for Comparison. The null hypothesis provides a baseline or a default position that indicates no effect, no difference, or no relationship between variables. It is the statement that researchers aim to test against an alternative hypothesis.

  16. 10.1

    10.1 - Setting the Hypotheses: Examples. A significance test examines whether the null hypothesis provides a plausible explanation of the data. The null hypothesis itself does not involve the data. It is a statement about a parameter (a numerical characteristic of the population). These population values might be proportions or means or ...

  17. Null hypothesis

    The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise.. The statement being tested in a test of statistical significance is called the null hypothesis. The test of significance is designed to assess the strength ...

  18. 9.1: Null and Alternative Hypotheses

    Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.

  19. Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

  20. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  21. How to Write About Negative (Or Null) Results in ...

    Researchers are often disappointed when their work yields "negative" results, meaning that the null hypothesis cannot be rejected. However, negative results are essential for research to progress. Negative results tell researchers that they are on the wrong path, or that their current techniques are ineffective. This is a natural and necessary part of discovering something that was previously ...

  22. Chi-Square (Χ²) Tests

    Null hypothesis (H 0): ... Example: Chi-square test of independence. Null hypothesis (H 0): The proportion of people who are left-handed is the same for Americans and Canadians. ... If you decide to include a Pearson's chi-square test in your research paper, dissertation or thesis, ...